Analysis of electromagnetic wave energy safety of underground metal structure near-field coupled large loop transmitting antenna
-
摘要: 当井下巷道内分布的金属结构处于大环发射天线近场时,会耦合大环发射天线的电磁波能量。一旦金属结构存在断点并发生刮擦,可能会以刮擦放电的形式产生放电火花并点燃瓦斯气体,对煤矿井下安全造成威胁。针对该问题,从近场耦合危险系数及安全距离2个方面分析了井下金属结构近场耦合大环发射天线电磁波能量的安全性。通过建立金属结构近场耦合大环发射天线电磁波能量等效电路,推导出近场耦合危险系数表达式和金属结构与大环发射天线之间的安全距离的表达式。分析了大环发射天线半径、金属结构等效接收线圈半径、刮擦放电火花负载、金属结构与大环发射天线之间的距离对近场耦合危险系数和安全距离的影响。仿真结果表明:近场耦合危险系数随大环发射天线半径的增大先稍增大再稍减小或一直增大;刮擦放电火花负载在一定条件下可使近场耦合危险系数达到峰值,当大环发射天线半径大于等于金属结构等效接收线圈半径时,峰值处的近场耦合危险系数有可能超过近场耦合危险系数临界值0.46,可能会造成危险;当大环发射天线半径小于金属结构等效接收线圈半径时,峰值处的近场耦合危险系数大部分情况下小于临界值0.46,造成危险的可能性较小;环发射天线半径在一定条件下可使近场耦合危险系数达到峰值,峰值处的近场耦合危险系数随金属结构等效接收线圈半径的增大先增大后减小,超过近场耦合危险系数临界值0.46的可能性较大,这种耦合在瓦斯气体环境中很可能造成危险。安全距离随大环发射天线半径的增大而增大,即刮擦放电火花负载上电磁波能量的安全性随大环发射天线半径的增大而降低;当大环发射天线半径大于等于金属结构等效接收线圈半径时,安全距离随金属结构等效接收线圈半径的增大而增大,即刮擦放电火花负载上电磁波能量的安全性随金属结构等效接收线圈半径的增大而降低;当大环发射天线半径小于金属结构等效接收线圈半径时,安全距离随金属结构等效接收线圈半径的增大先缓慢增大再减小,即刮擦放电火花负载上电磁波能量的安全性随金属结构等效接收线圈半径的增大先降低再升高。Abstract: When the metal structures distributed in the underground roadway are in the near-field of the large loop transmitting antenna, they will couple the electromagnetic wave energy of the large loop transmitting antenna. Once the metal structure has a breakpoint and friction occurs, it may produce friction discharge spark and ignite gas. This poses a threat to the safety of coal mine. In order to solve this problem, the safety of electromagnetic wave energy of underground metal structure near-field coupled large loop transmitting antenna is analyzed from two aspects of near-field coupling risk coefficient and safe distance. By establishing the equivalent circuit of electromagnetic wave energy of metal structure near-field coupled large loop transmitting antenna, the expressions of near-field coupling risk coefficient and safe distance between metal structure and large loop transmitting antenna are derived. The influence of the radius of the large loop transmitting antenna, the radius of the equivalent receiving coil of the metal structure, the friction discharge spark load and the distance between the metal structure and the large loop transmitting antenna on the near-field coupling risk coefficient and the safe distance are analyzed. The simulation results show that the near-field coupling risk coefficient increases slightly at first and then decreases slightly or increases all the time with the increase of the radius of the large loop transmitting antenna. Under certain conditions, the friction discharge spark load can make the near-field coupling risk coefficient reach the peak value. When the radius of the large loop transmitting antenna is greater than or equal to the radius of the equivalent receiving coil of the metal structure, the near-field coupling risk coefficient at the peak value may exceed the critical value 0.46 of the near-field coupling risk coefficient. This may cause danger. When the radius of the large loop transmitting antenna is smaller than the radius of equivalent receiving coil of the metal structure, the near-field coupling risk coefficient at the peak value is less than the critical value 0.46 in most cases. This will not cause danger in most cases. Under certain conditions, the radius of the large loop transmitting antenna can make the near-field coupling risk coefficient reach the peak value. The near-field coupling risk coefficient at the peak value first increases and then decreases with the increase of the radius of equivalent receiving coil of the metal structure. It is more likely to exceed the critical value 0.46 of the near-field coupling risk coefficient, which is likely to cause danger in the gas environment. The safe distance increases with the increase of the radius of the large loop transmitting antenna. The safety of the electromagnetic wave energy on the friction discharge spark load decreases with the increase of the radius of the large loop transmitting antenna. When the radius of the large loop transmitting antenna is greater than or equal to the radius of the equivalent receiving coil of the metal structure, the safe distance increases with the increase of the radius of the equivalent receiving coil of the metal structure. The safety of the electromagnetic wave energy on the friction discharge spark load decreases with the increase of the radius of the equivalent receiving coil of the metal structure. When the radius of the large loop transmitting antenna is smaller than the radius of the equivalent receiving coil of the metal structure, the safe distance first increases slowly and then decreases with the increase of the radius of the equivalent receiving coil of the metal structure. The safety of the electromagnetic wave energy on the friction discharge spark load first decreases and then increases with the increase of the radius of the equivalent receiving coil of the metal structure.
-
-
[1] 彭霞. 矿井电磁波辐射能量对瓦斯安全性的影响[J]. 煤炭学报,2013,38(4):542-547.PENG Xia. Electromagnetic wave radiation energy influences on safety of gas in coal mine[J]. Journal of China Coal Society,2013,38(4):542-547. [2] 柳玉磊. 电磁波功率与煤矿瓦斯爆炸的关系探讨[D]. 北京: 煤炭科学研究总院, 2008.LIU Yulei. Discussion on the relationship between electromagnetic waves power and coal mine gas explosion[D]. Beijing: China Coal Research Institute, 2008. [3] GB 3836.1—2010 爆炸性环境 第1部分: 设备 通用要求[S].GB 3836.1-2010 Explosive atmospheres part 1: equipment general requirements[S]. [4] EXCELL P S. Choosing threshold levels for electromagnetic hazards[J]. IEEE Technology and Society Magazine,2002,21(4):32-39. doi: 10.1109/MTAS.2003.1166565 [5] 刘晓阳,马新彦,刘坤,等. 矿井5G电磁波辐射能量安全性研究[J]. 工矿自动化,2021,47(7):85-91.LIU Xiaoyang,MA Xinyan,LIU Kun,et al. Research on the safety of 5G electromagnetic wave radiation energy in coal mine[J]. Industry and Mine Automation,2021,47(7):85-91. [6] 刘晓阳,马新彦,田子建,等. 井下金属结构等效接收天线的放电火花安全性研究[J]. 工矿自动化,2021,47(9):126-130.LIU Xiaoyang,MA Xinyan,TIAN Zijian,et al. Research on discharge spark safety of equivalent receiving antenna of underground metal structure[J]. Industry and Mine Automation,2021,47(9):126-130. [7] 孙继平,贾倪. 矿井电磁波能量安全性研究[J]. 中国矿业大学学报,2013,42(6):1002-1008. doi: 10.3969/j.issn.1000-1964.2013.06.018SUN Jiping,JIA Ni. Safety study of electromagnetic wave energy in coal mine[J]. Journal of China University of Mining & Technology,2013,42(6):1002-1008. doi: 10.3969/j.issn.1000-1964.2013.06.018 [8] KRAUS J D, MARHEFKA R J. Antennas: for all application[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2008. [9] 朱诚. 基于无线胶囊内窥镜系统的环形天线的设计与研究[D]. 南京: 南京邮电大学, 2019.ZHU Cheng. Design of loop antenna for wireless capsule endoscope system[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019. [10] 冯柳. 煤矿井下磁耦合谐振式无线电能传输的研究[D]. 北京: 中国矿业大学(北京), 2020.FENG Liu. Research on magnetically coupled resonance wireless power transmission in coal mine[D]. Beijing: China University of Mining & Technology-Beijing, 2020. [11] 傅文珍,张波,丘东元,等. 自谐振线圈耦合式电能无线传输的最大效率分析与设计[J]. 中国电机工程学报,2009,29(18):21-26. doi: 10.3321/j.issn:0258-8013.2009.18.004FU Wenzhen,ZHANG Bo,QIU Dongyuan,et al. Maximum efficiency analysis and design of self-resonance coupling coils for wireless power transmission system[J]. Proceedings of the CSEE,2009,29(18):21-26. doi: 10.3321/j.issn:0258-8013.2009.18.004 [12] 吴亚飞. 毫米波天线阵近场电磁波的汇聚与调控研究[D]. 成都: 电子科技大学, 2020.WU Yafei. Research on near-field electromagnetic focusing and steering of millimeter-wave antenna array[D]. Chengdu: University of Electronic Science and Technology of China, 2020. [13] 冯林, 杨显清, 王园, 等. 电磁场与电磁波[M]. 北京: 机械工业出版社, 2004.FENG Lin, YANG Xianqing, WANG Yuan, et al. Electromagnetic fields and electromagnetic waves[M]. Beijing: China Machine Press, 2004. [14] 田子建,曹阳阳,樊京,等. 磁耦合谐振式无线电能传输系统功率优化[J]. 工矿自动化,2016,42(6):33-37.TIAN Zijian,CAO Yangyang,FAN Jing,et al. Transmission power optimization of magnetic resonance coupling wireless power transmission system[J]. Industry and Mine Automation,2016,42(6):33-37. [15] 邓亚峰. 无线供电技术[M]. 北京: 冶金工业出版社, 2013.DENG Yafeng. Wireless power technology[M]. Beijing: Metallurgical Industry Press, 2013. [16] 陈绥毓. 嵌入式系统磁谐振无线电能传输装置优化设计研究[D]. 长沙: 国防科学技术大学, 2016.CHEN Suiyu. Optimal design of magnetically coupled resonant wireless power transfer system for embedded systems[D]. Changsha: National University of Defense Technology, 2016.