留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤体红外热像异常区域分割方法

赵小虎 车亭雨 叶圣 田贺 张凯

赵小虎,车亭雨,叶圣,等. 煤体红外热像异常区域分割方法[J]. 工矿自动化,2022,48(9):92-99.  doi: 10.13272/j.issn.1671-251x.2022030086
引用本文: 赵小虎,车亭雨,叶圣,等. 煤体红外热像异常区域分割方法[J]. 工矿自动化,2022,48(9):92-99.  doi: 10.13272/j.issn.1671-251x.2022030086
ZHAO Xiaohu, CHE Tingyu, YE Sheng, et al. Segmentation method of the abnormal area of coal infrared thermal image[J]. Journal of Mine Automation,2022,48(9):92-99.  doi: 10.13272/j.issn.1671-251x.2022030086
Citation: ZHAO Xiaohu, CHE Tingyu, YE Sheng, et al. Segmentation method of the abnormal area of coal infrared thermal image[J]. Journal of Mine Automation,2022,48(9):92-99.  doi: 10.13272/j.issn.1671-251x.2022030086

煤体红外热像异常区域分割方法

doi: 10.13272/j.issn.1671-251x.2022030086
基金项目: 中央高校基本科研业务费专项资金资助项目(2020ZDPY0223)。
详细信息
    作者简介:

    赵小虎(1976—),男,江苏徐州人,教授,博士,主要研究方向为矿山物联网、计算机网络和智能计算,E-mail:xiaohuzhao@126.com

    通讯作者:

    张凯(1982—),男,江苏徐州人,博士研究生,研究方向为智慧矿山网络优化,E-mail:kaizhang@cumt.edu.cn

  • 中图分类号: TD315/67

Segmentation method of the abnormal area of coal infrared thermal image

  • 摘要: 红外辐射可反映煤岩受载破坏情况,用于监测和预防煤岩动力灾害,但红外热像仪生成的红外热像图像素分辨率低、噪声较大,导致检测结果受主观因素影响较大,无法准确识别煤体损伤区域。将深度学习和红外热像结合进行无损检测已成为趋势,但目前结合深度学习和红外热像对煤体受载破坏进行识别检测的研究相对较少。针对上述问题,提出一种基于多尺度通道注意力模块(MS−CAM)U−Net模型的煤体红外热像异常区域分割方法。在传统U−Net模型的编码器中引入MS−CAM,设计了基于MS−CAM的U−Net模型结构,使模型在关注煤体红外热像异常区域显著特征的同时,还关注异常区域小目标特征,以提高异常区域分割精度。为降低煤体红外热像数据集匮乏对模型准确率和适用性的影响,对创建的煤体红外热像数据集进行数据增强操作,并采用MS COCO数据集对基于MS−CAM的U−Net模型进行预训练,再采用煤体红外热像数据集训练,得出最终网络权重。实验结果表明,该方法可有效分割煤体红外热像异常区域,精确率、F1分数、Dice系数和平均交并比分别为94.75%,94.94%,94.65%,90.03%,均优于Deeplab模型、U−Net模型和基于SENet注意力机制的U−Net模型。

     

  • 图  1  基于MS−CAM的U−Net模型结构

    Figure  1.  U-Net model structure based on multi-scale channel attention module(MS-CAM)

    图  2  MS-CAM结构

    Figure  2.  MS-CAM structure

    图  3  实验系统

    Figure  3.  Experimental system

    图  4  煤样3种加载破坏时期红外热像图

    Figure  4.  Three infrared thermal images of coal samples during loading pressure period

    图  5  LabelMe工具中煤样红外热像异常区域标注

    Figure  5.  Abnormal area tagging in infrared thermal images of coal samples in LabelMe tool

    图  6  部分增强图像

    Figure  6.  Partial enhanced images

    图  7  损失函数曲线

    Figure  7.  Loss function curve

    图  8  实验流程

    Figure  8.  Experiment process

    图  9  不同模型对煤体红外热像异常区域的分割结果

    Figure  9.  Segmentation results of infrared thermal images of coal samples by different models

    图  10  U−Net(SENet)模型和U−Net(MS−CAM)模型分割结果的类激活热力图

    Figure  10.  Class activation heat map of segmentation results by U-Net(SENet) model and U-Net(MS-CAM)model

    表  1  基于MS−CAM的U−Net模型网络结构及对应特征图

    Table  1.   Network structures of U-Net model based on MS-CAM and corresponding characteristic images

    网络结构特征图尺寸卷积核参数
    Conv_1 256×256×64
    256×256×64
    3×3×64
    3×3×64
    MS−CAM_1 256×256×64
    DownSampling_1 128×128×64 2×2
    Conv_2 128×128×128
    128×128×128
    3×3×128
    3×3×128
    MS−CAM_2 128×128×128
    DownSampling_2 64×64×128 2×2
    Conv_3 64×64×256
    64×64×256
    3×3×256
    3×3×256
    MS−CAM_3 64×64×256
    DownSampling_3 32×32×256 2×2
    Conv_4 32×32×512
    32×32×512
    3×3×512
    3×3×512
    MS−CAM_4 32×32×512
    DownSampling_4 16×16×512 2×2
    Conv 16×16×512
    16×16×512
    3×3×512
    3×3×512
    UpSampling_1 32×32×512 2×2
    Concatenate_1 32×32×1024 UpSampling_1+ MS−CAM_4
    conv_1 32×32×256
    32×32×256
    3×3×256
    3×3×256
    UpSampling_2 64×64×256 2×2
    Concatenate_2 64×64×512 UpSampling_2+ MS−CAM_3
    conv_2 64×64×128
    64×64×128
    3×3×128
    3×3×128
    UpSampling_3 128×128×128 2×2
    Concatenate_3 128×128×256 UpSampling_3+ MS−CAM_2
    conv_3 128×128×64
    128×128×64
    3×3×64
    3×3×64
    UpSampling_4 256×256×64 2×2
    Concatenate_4 256×256×128 UpSampling_4+ MS−CAM_1
    conv_4 256×256×64
    256×256×64
    3×3×64
    3×3×64
    Conv1×1 256×256×1 1×1×1
    下载: 导出CSV

    表  2  不同模型分割结果评价指标对比

    Table  2.   Comparison of evaluation indexes for segmentation results of different models %

    模型精确率F1分数Dice系数MIoU
    Deeplab88.6590.3187.9283.78
    U−Net92.2891.6791.5884.85
    U−Net(SENet)93.4693.5692.8187.28
    U−Net(MS−CAM)94.7594.9494.6590.03
    下载: 导出CSV
  • [1] 程富起,李忠辉,魏洋,等. 基于单轴压缩红外辐射的煤岩损伤演化特征[J]. 工矿自动化,2018,44(5):64-70. doi: 10.13272/j.issn.1671-251x.2017110064

    CHENG Fuqi,LI Zhonghui,WEI Yang,et al. Coal-rock damage evolution characteristics based on infrared radiation under uniaxial compression[J]. Industry and Mine Automation,2018,44(5):64-70. doi: 10.13272/j.issn.1671-251x.2017110064
    [2] 娄全,李忠辉,李爱国,等. 混凝土变形破坏的红外辐射特征研究[J]. 工矿自动化,2015,41(7):44-48.

    LOU Quan,LI Zhonghui,LI Aiguo,et al. Research of infrared radiation characteristics of concrete deformation and failure[J]. Industry and Mine Automation,2015,41(7):44-48.
    [3] TIAN He,LI Zhonghui,SHEN Xiaofan,et al. Identification method of infrared radiation precursor information of coal sample failure and instability under uniaxial compression[J]. Infrared Physics & Technology,2021,119:103957.
    [4] SUN Hai,MA Liqiang,LIU Wei,et al. The response mechanism of acoustic and thermal effect when stress causes rock damage[J]. Applied Acoustics,2021,180:108093. doi: 10.1016/j.apacoust.2021.108093
    [5] LIU Wei,MA Liqiang,SUN Hai,et al. Using the characteristics of infrared radiation b-value during the rock fracture process to offer a precursor for serious failure[J]. Infrared Physics & Technology,2021,114:103644.
    [6] 宋晶晶,李忠辉,张昕,等. 岩样损伤红外热像的归一化直方图表征研究[J]. 红外技术,2021,43(8):777-783.

    SONG Jingjing,LI Zhonghui,ZHANG Xin,et al. Research on normalized histogram characterization of infrared thermal image of rock sample damage[J]. Infrared Technology,2021,43(8):777-783.
    [7] CAO K,YUAN Q,XIE G,et al. Infrared radiation characteristics during crack development in water-bearing sandstone[J]. Soil Mechanics and Foundation Engineering,2021,58(3):209-214. doi: 10.1007/s11204-021-09730-2
    [8] LI Zhonghui,YIN Shan,NIU Yue,et al. Experimental study on the infrared thermal imaging of a coal fracture under the coupled effects of stress and gas[J]. Journal of Natural Gas Science and Engineering,2018,55:444-451. doi: 10.1016/j.jngse.2018.05.019
    [9] ZHANG Xueliang,WANG Deliang. Deep learning based binaural speech separation in reverberant environments[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing,2017,25(5):1075-1084. doi: 10.1109/TASLP.2017.2687104
    [10] WANG Bin,DONG Ming,REN Ming,et al. Automatic fault diagnosis of infrared insulator images based on image instance segmentation and temperature analysis[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(8):5345-5355. doi: 10.1109/TIM.2020.2965635
    [11] AKRAM M W,LI Guiqiang,JIN Yi,et al. Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning[J]. Solar Energy,2020,198:175-186. doi: 10.1016/j.solener.2020.01.055
    [12] BANG H T,PARK S,JEON H. Defect identification in composite materials via thermography and deep learning techniques[J]. Composite Structures,2020,246:112405. doi: 10.1016/j.compstruct.2020.112405
    [13] DAI Yimian, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]. The IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, 2021: 3560-3569.
    [14] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. International Conference on Machine Learning, Lille, 2015: 448-456.
    [15] SHARMA G, LIU D, MAJI S, et al. Parsenet: a parametric surface fitting network for 3D point clouds[C]. European Conference on Computer Vision, Glasgow, 2020: 261-276.
    [16] WU Yuxin,HE Kaiming. Group normalization[J]. International Journal of Computer Vision,2018,128(3):742-755.
    [17] TAN Chuanqi, SUN Fuchuan, KONG Tao, et al. A survey on deep transfer learning[C]. International Conference on Artificial Neural Networks, Rhodes, 2018: 270-279.
    [18] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]. European Conference on Computer Vision, Zurich, 2014: 740-755.
    [19] MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]. The 4th International Conference on 3D Vision, Stanford, 2016: 565-571.
    [20] SHELHAMER E,LONG J,DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(4):640-651.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  50
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 修回日期:  2022-09-06
  • 网络出版日期:  2022-06-21

目录

    /

    返回文章
    返回