Analysis of rock burst risk of mining in hanging wall of normal and reverse faults
-
摘要: 现有针对不同条件下断层冲击地压危险性的研究大部分围绕下盘开采或单一断层形式展开,而对于不同断层上盘开采冲击地压危险性的对比研究较少涉及。针对上述问题,以河南义马耿村煤矿12220工作面为研究背景,借助理论分析、数值模拟及现场监测等方法,对正、逆断层上盘开采时冲击地压危险性进行了分析。建立了正、逆断层上盘开采的力学模型,通过对断层岩块的受力分析,得出了断层上下剪滑的力学条件,理论分析结果表明:正、逆断层上盘开采时断层是否发生剪滑与断层倾角、断层内摩擦角及岩块受到的断层面作用力等因素密切相关,且工作面越靠近断层,发生剪滑的危险性越大。开展了正、逆断层上盘开采过程的数值模拟研究,对断层面法向应力、剪切应力及滑移量变化进行了分析,结果表明:在工作面开采过程中,当工作面距断层距离小于40 m后发生剪滑及冲击地压的危险性逐渐增加,距断层10 m时危险性最大,最易发生剪滑的位置为断层面的煤层顶板和煤层处,煤层底板受开采影响程度明显小于顶板;断层类型对冲击地压危险性有一定的影响,逆断层开采时的冲击地压危险性高于正断层。对12220工作面的冲击地压危险性进行了微震监测,结果表明:当工作面距断层小于20 m时,微震事件频繁,冲击地压危险性较大,与数值模拟结果一致,验证了数值模拟分析的合理性。Abstract: The existing research on the rock burst risk of faults under different conditions is mostly carried out around the footwall mining or single fault form. The comparative research on the rock burst risk of hanging wall mining of different faults is seldom involved. In order to solve the above problems, the 12220 working face of Gengcun Coal Mine in Yima, Henan is taken as the research background. The rock burst risk of mining in hanging wall of normal and reverse faults is analyzed by means of theoretical analysis, numerical simulation and field monitoring. The mechanical model of mining in the hanging wall of normal and reverse faults is established. The mechanical condition of shear slip on the fault is obtained by analyzing the stress of fault rock. The results of the theoretical analysis show that the occurrence of shear slip is closely related to such factors as fault dip angle, internal friction angle of fault and fault surface force on rock block during hanging wall mining of normal and reverse faults. The closer the working face is to the fault, the greater the risk of shear slip. The numerical simulation of the mining process in the hanging wall of normal and reverse faults is carried out, and the normal stress, shear stress and slippage of the fault plane are analyzed. The results show that in the mining process of the working face, when the distance between the working face and the fault is less than 40 m, the risk of shear slip and rock burst increases gradually. When the distance from the fault is 10 m, the risk is the greatest. The most likely position for shear slip is the coal seam roof and coal seam of the fault plane. The influence degree of the coal seam floor is obviously less than that of the roof. The type of fault has a certain impact on the rock burst risk. The rock burst risk of reverse fault mining is higher than that of normal fault. Microseismic monitoring of rock burst risk is carried out on the 12220 working face. The results show that when the working face is less than 20 m from the fault, the microseismic events are frequent and the rock burst risk is high. The results are consistent with the numerical simulation results, which verifies the rationality of the numerical simulation analysis.
-
Key words:
- coal mining /
- normal fault /
- reverse fault /
- hanging wall /
- fault rock burst /
- rock burst risk /
- shear stress /
- slippage
-
表 1 模型各岩层力学参数
Table 1. Mechanical parameters of each stratum of the model
岩性 密度/
(kg·m−3)体积
模量/GPa剪切
模量/GPa黏聚力/
MPa抗拉
强度/MPa内摩
擦角/(º)粗砂岩 2 500 20.80 8.30 15.82 9.2 35 砂岩 2 560 10.70 4.60 5.93 3.1 28 细砂岩 2 700 10.80 4.30 2.82 5.6 30 粉砂岩 2 500 6.80 3.30 2.82 0.3 28 煤 1 440 1.34 0.45 1.10 1.5 25 泥岩 2 500 3.20 1.20 1.82 1.5 28 底板细砂岩 2 700 10.80 4.30 2.82 5.6 30 底板砂岩 2 560 10.70 6.60 5.93 3.1 30 底板粗砂岩 2 500 11.80 5.30 5.82 5.2 30 断层面 1 800 0.10 0.40 3.56 5.3 30 -
[1] 姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205-213. doi: 10.13225/j.cnki.jccs.2013.0024JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205-213. doi: 10.13225/j.cnki.jccs.2013.0024 [2] 潘一山,王来贵,章梦涛,等. 断层冲击矿压发生的理论与试验研究[J]. 岩石力学与工程学报,1998,17(6):642-649. doi: 10.3321/j.issn:1000-6915.1998.06.006PAN Yishan,WANG Laigui,ZHANG Mengtao,et al. The theoretical and testing study of fault rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,1998,17(6):642-649. doi: 10.3321/j.issn:1000-6915.1998.06.006 [3] 周睿,张占存,陈洋. 逆断层活化范围变化规律数值模拟[J]. 煤矿安全,2016,47(11):197-199,203. doi: 10.13347/j.cnki.mkaq.2016.11.055ZHOU Rui,ZHANG Zhancun,CHEN Yang. Numerical simulation of change laws in reverse fault activating scope[J]. Safety in Coal Mines,2016,47(11):197-199,203. doi: 10.13347/j.cnki.mkaq.2016.11.055 [4] 杨继强,张照允,王珂. 正断层上盘边角煤开采诱发断层活化规律[J]. 煤矿安全,2018,49(12):204-207,211. doi: 10.13347/j.cnki.mkaq.2018.12.051YANG Jiqiang,ZHANG Zhaoyun,WANG Ke. Activation laws of normal fault induced by edge coal mining in upper wall[J]. Safety in Coal Mines,2018,49(12):204-207,211. doi: 10.13347/j.cnki.mkaq.2018.12.051 [5] 孔朋,蒋金泉,王普,等. 正断层两盘不同开采顺序的支承应力演化规律[J]. 煤矿安全,2017,48(10):65-68. doi: 10.13347/j.cnki.mkaq.2017.10.017KONG Peng,JIANG Jinquan,WANG Pu,et al. Bearing stress evolution law of normal fault under two different mining sequence[J]. Safety in Coal Mines,2017,48(10):65-68. doi: 10.13347/j.cnki.mkaq.2017.10.017 [6] 李忠华,梁影,包思远,等. 断层冲击地压的影响因素分析[J]. 中国地质灾害与防治学报,2020,31(3):126-131. doi: 10.16031/j.cnki.issn.1003-8035.2020.03.17LI Zhonghua,LIANG Ying,BAO Siyuan,et al. Analysis on influence factors of the fault rock burst[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):126-131. doi: 10.16031/j.cnki.issn.1003-8035.2020.03.17 [7] 易恩兵. 深井工作面断层区域冲击地压防治分析[J]. 矿业研究与开发,2018,38(12):57-60. doi: 10.13827/j.cnki.kyyk.2018.12.013YI Enbing. Analysis and prevention on rock burst in fault area of working face in deep mine[J]. Mining Research and Development,2018,38(12):57-60. doi: 10.13827/j.cnki.kyyk.2018.12.013 [8] 王学滨,郭长升,邓超群. 正、逆断层下盘开采断层及其附近煤层应力时空分布的数值模拟[J]. 地球物理学进展,2020,35(5):1993-2000. doi: 10.6038/pg2020DD0294WANG Xuebin,GUO Changsheng,DENG Chaoqun. Numerical simulation of spatiotemporal distributions of stresses on the fault and coal seam in the vicinity of the fault for mining in the footwall of the normal and reverse fault[J]. Progress in Geophysics,2020,35(5):1993-2000. doi: 10.6038/pg2020DD0294 [9] 王涛,由爽,高宇. 推进方式对断层围岩应力演化规律的影响[J]. 采矿与安全工程学报,2017,34(2):276-281,286. doi: 10.13545/j.cnki.jmse.2017.02.011WANG Tao,YOU Shuang,GAO Yu. The influence of different mining modes on the evolution law of stress in fault surrounding rock[J]. Journal of Mining & Safety Engineering,2017,34(2):276-281,286. doi: 10.13545/j.cnki.jmse.2017.02.011 [10] 赵毅鑫,王浩,焦振华,等. 逆断层下盘工作面回采扰动引发断层活化特征的实验研究[J]. 煤炭学报,2018,43(4):914-922.ZHAO Yixin,WANG Hao,JIAO Zhenhua,et al. Experimental study of the activities of reverse fault induced by footwall coal mining[J]. Journal of China Coal Society,2018,43(4):914-922. [11] 闵飞虎,向必伟,刘辉,等. 采动影响下逆断层活化规律的数值模拟[J]. 煤田地质与勘探,2019,47(4):144-152. doi: 10.3969/j.issn.1001-1986.2019.04.022MIN Feihu,XIANG Biwei,LIU Hui,et al. Numerical simulation on mechanism of thrust fault reactivation during mining[J]. Coal Geology & Exploration,2019,47(4):144-152. doi: 10.3969/j.issn.1001-1986.2019.04.022 [12] 赵善坤. 采动影响下逆冲断层“活化”特征试验研究[J]. 采矿与安全工程学报,2016,33(2):354-360. doi: 10.13545/j.cnki.jmse.2016.02.026ZHAO Shankun. Experiments on the characteristics of thrust fault activation influenced by mining operation[J]. Journal of Mining & Safety Engineering,2016,33(2):354-360. doi: 10.13545/j.cnki.jmse.2016.02.026 [13] 陈学华,吕鹏飞,宋卫华,等. 综放开采过断层冲击地压危险分析及防治技术[J]. 中国安全科学学报,2016,26(5):81-87. doi: 10.16265/j.cnki.issn1003-3033.2016.05.015CHEN Xuehua,LYU Pengfei,SONG Weihua,et al. Analysis and control technology of danger of rock burst when fully mechanized caving passing through fault[J]. China Safety Science Journal,2016,26(5):81-87. doi: 10.16265/j.cnki.issn1003-3033.2016.05.015 [14] 任政,姜耀东. 采动影响下逆断层冲击地压矿震时空分布规律分析[J]. 矿业科学学报,2020,5(5):482-489. doi: 10.19606/j.cnki.jmst.2020.05.002REN Zheng,JIANG Yaodong. Analysis of spatial and temporal distribution laws of mine earthquake induced by thrust fault coal bumps under mining disturbance[J]. Journal of Mining Science and Technology,2020,5(5):482-489. doi: 10.19606/j.cnki.jmst.2020.05.002 [15] 刘洪儒,李宗超,代进,等. 正断层下盘采动支承压力分布及对上盘的影响分析[J]. 山东科技大学学报(自然科学版),2014,33(3):48-53.LIU Hongru,LI Zongchao,DAI Jin,et al. Abutment pressure distribution and impact analysis on the plate in normal faults[J]. Journal of Shandong University of Science and Technology (Natural Science),2014,33(3):48-53. [16] 许磊,魏世明. 逆断层活化诱发冲击地压危险性研究[J]. 煤炭技术,2015,34(1):98-101.XU Lei,WEI Shiming. Research on risk of rock burst induced by reverse fault activation[J]. Coal Technology,2015,34(1):98-101. [17] 王浩. 采动应力场下地质弱面张剪活化诱冲机制及防治研究[D]. 北京: 中国矿业大学(北京), 2018.WANG Hao. Research on the prevention and mechanism of coal burst induced by geological weak-plane tensile-slip activities during mining[D]. Beijing: China University of Mining and Technology-Beijing, 2018. [18] 马智勇,郑树栋,张洋,等. 耿村煤矿冲击地压综合防治技术研究[J]. 陕西煤炭,2014,33(2):51-53. doi: 10.3969/j.issn.1671-749X.2014.02.018MA Zhiyong,ZHENG Shudong,ZHANG Yang,et al. Research on integrated control technology of rock burst in Gengcun Coal Mine[J]. Shaanxi Coal,2014,33(2):51-53. doi: 10.3969/j.issn.1671-749X.2014.02.018