Study on determination of development height of mining-induced fissure zone in deep outburst coal seam
-
摘要: 采用高位定向长钻孔抽采瓦斯技术代替高抽巷抽采采动卸压瓦斯不仅能够大幅缩减岩石巷道掘进量,有效缓解矿井采掘接替紧张局面,而且瓦斯治理效果显著,但高位定向长钻孔抽采瓦斯技术在实际应用中经常会出现因采动覆岩“三带”发育高度范围确定失准,定向长钻孔布置层位过高或过低导致应用效果不佳的问题。针对该问题,以河南平顶山天安煤业股份有限公司八矿己15−15050工作面为研究背景,采用经验公式法和数值模拟实验法确定该工作面煤层采动断裂带发育高度,得到了垮落带最大发育高度为13.2 m,断裂带最大发育高度为48 m。利用千米定向钻机在己15−15050工作面施工高位定向长钻孔对所得的断裂带发育高度进行验证,结果表明:距煤层顶板20 m处上覆岩层岩性较为破碎,断裂带高浓度瓦斯区在距顶板23 m以上;当己15−15050工作面推进至105 m时,高位定向长钻孔与采空区断裂带已充分沟通;己15−15050工作面上隅角及回风流瓦斯均保持在0.47%,且高位定向长钻孔单孔最大瓦斯抽采体积分数达13.2%,日抽采纯量保持在3~4 m3/min,配风量按2 500 m3/min计算,高位定向长钻孔抽采瓦斯量可达风排瓦斯量的25.5%~34.0%,期间未出现瓦斯超限,高位定向长钻孔布置在当前层位内能够成功治理上隅角和回风流瓦斯,验证了综合2种方法确定断裂带发育高度的正确性。Abstract: The use of high-level directional long borehole gas extraction technology instead of high-level extraction roadway to extract mining pressure relief gas can greatly reduce the amount of rock roadway excavation. And it can effectively relieve the tension situation of mine mining replacement. Moreover, it can achieve remarkable gas control effect. But the high-level directional long borehole gas extraction technology often has problems in practical application. Due to inaccurate determination of the development height range of the upper "three zones" of mining overburden, the directional long borehole layout horizon is too high or too low. The application effect is poor. In order to solve this problem, taking the VI15-15050 working face of No. 8 Coal Mine of Henan Pingdingshan Tian'an Coal Mining Co., Ltd. as the research background, the development height of mining-induced fissure zone in the coal seam of the working face is determined by using empirical formula method and numerical simulation experiment method. The maximum development height of the caving zone is 13.2 m, and the maximum development height of the fissure zone is 48 m. The kilometer directional drilling rig is used to construct high-level directional long borehole in the VI15-15050 working face, and the fissure zone development height is verified. The results show that the lithology of overburden is relatively broken at 20 m from the roof of the coal seam, and the high concentration gas area in the fissure zone is more than 23 m from the roof. When the VI15-15050 working face is pushed to 105 m, the high-level directional long borehole and the fissure zone in the goaf have been fully communicated. The gas in the upper corner and return air flow of the VI15-15050 working face is kept at 0.47%. The maximum gas extraction volume fraction of a single hole of the high-level directional long borehole is 13.2%. The daily net gas extraction volume is kept at 3-4 m3/min, and the air distribution volume is calculated as 2500 m3/min. The gas extraction volume of high-level directional long boreholes can reach 25.5%-34.0% of the air exhaust gas volume. During this period, there is no gas overrun, and the high-level directional long boreholes arranged in the current layer can successfully control the gas in the upper corner and return air flow. The correctness of the development height of the fissure zone obtained by the two methods is verified.
-
表 1 煤层顶板岩石力学参数测试结果
Table 1. Test results of mechanical parameters of coal seam roof and rock stratum
岩石
名称弹性
模量/GPa抗压
强度/MPa抗压强度
平均值/MPa抗拉
强度/MPa抗拉强度
平均值/MPa泥岩 11.0 21.5~27.6 23.3 0.9~1.4 1.05 砂质泥岩 18.5 29.6~47.4 35.3 1.5~4.8 3.1 细粒砂岩 28.3 38.3~72.6 54.0 3.2~7.6 6.1 中粒砂岩 33.6 21.8~85.4 48.5 1.4~6.3 3.3 粗粒砂岩 23.1 21.8~58.9 32.7 2.3~3.3 2.8 表 2 高位定向长钻孔设计参数
Table 2. Design parameters of high-level directional long borehole
孔号 孔深/m 下筛管深度/m 钻孔终孔距
煤层垂距/m钻孔终孔距
风巷平距/m1号 522 522 16 15 2号 525 525 21 25 3号 527 527 25 35 4号 522 522 29 45 5号 513 513 33 55 6号 501 501 38 65 -
[1] 舒龙勇,王凯,齐庆新,等. 煤与瓦斯突出关键结构体致灾机制[J]. 岩石力学与工程学报,2017,36(2):347-356. doi: 10.13722/j.cnki.jrme.2016.0598SHU Longyong,WANG Kai,QI Qingxin,et al. Key structural body theory of coal and gas outburst[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):347-356. doi: 10.13722/j.cnki.jrme.2016.0598 [2] 石智军,姚克,姚宁平,等. 我国煤矿井下坑道钻探技术装备40年发展与展望[J]. 煤炭科学技术,2020,48(4):1-34. doi: 10.13199/j.cnki.cst.2020.04.001SHI Zhijun,YAO Ke,YAO Ningping,et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology,2020,48(4):1-34. doi: 10.13199/j.cnki.cst.2020.04.001 [3] 苏伟伟. 近距离下邻近煤层群开采采空区瓦斯治理技术[J]. 中国安全科学学报,2018,28(12):83-88. doi: 10.16265/j.cnki.issn1003-3033.2018.12.014SU Weiwei. Technology for controlling gas in goaf of contiguous lower adjacent coal seam group[J]. Chinese Journal of Safety Science,2018,28(12):83-88. doi: 10.16265/j.cnki.issn1003-3033.2018.12.014 [4] 武旭东,邢玉忠. 基于CFD数值模拟的顶板走向长钻孔瓦斯抽采效果及参数优化[J]. 矿业安全与环保,2019,46(6):107-112.WU Xudong,XING Yuzhong. Gas drainage effect and parameter optimization of long borehole along roof strike based on CFD numerical simulation[J]. Mining Safety and Environmental Protection,2019,46(6):107-112. [5] 王夏南. 王庄煤业大采高工作面沿空留墙切顶卸压护巷技术研究[D]. 太原: 太原理工大学, 2018.WANG Xia'nan. Research on roof cutting and pressure relief roadway protection technology along goaf retaining wall in large mining height working face of Wangzhuang Coal Industry [D]. Taiyuan: Taiyuan University of Technology, 2018. [6] 王耀锋. 中国煤矿瓦斯抽采技术装备现状与展望[J]. 煤矿安全, 2020, 51(10): 67-77.WANG Yaofeng. Current situation and prospect of gas extraction technology and equipment for coal mines in China [J] Safety in Coal Mines, 2020, 51(10): 67-77. [7] 田东庄, 陈彦宇, 李晴, 等. 煤矿用钻杆螺纹的研究现状及展望[J]. 煤田地质与勘探, 2020, 48(4): 233-239.TIAN Dongzhuang, CHEN Yanyu, LI Qing, et al. Research status and prospect of drill pipe thread for coal mine [J] Coal Geology and Exploration, 2020, 48 (4): 233-239. [8] 童晨晨. 余吾煤业N2201工作面顶板走向长钻孔替代高抽巷瓦斯抽采技术研究[D]. 太原: 太原理工大学, 2018.TONG Chenchen. Research on the technology of long boreholes in roof instead of high drainage roadway in N2201 work face of Yuwu Coal Mine[D]. Taiyuan : Taiyuan University of Technology, 2018. [9] 闫保永, 曹柳, 张家贵. 煤层顶板裂隙带瓦斯抽采技术与装备探索[J]. 煤炭科学技术, 2020, 48(10): 60-66.YAN Baoyong, CAO Liu, ZHANG Jiagui. Exploration on gas drainage technology and equipment in seam roof fracture zone [J] Coal Science and Technology, 2020, 48(10): 60-66. [10] 许超. 淮南复杂顶板高位孔强造斜定向钻进技术实践[J]. 煤矿安全,2019,50(9):151-154. doi: 10.13347/j.cnki.mkaq.2019.09.038XU Chao. Practice of forced oblique directional drilling technology for high-level hole in complex roof in Huainan[J]. Safety in Coal Mines,2019,50(9):151-154. doi: 10.13347/j.cnki.mkaq.2019.09.038 [11] 王勇,马金魁. 顶板定向长钻孔“以孔代巷”抽采瓦斯技术研究[J]. 矿业安全与环保,2019,46(5):95-98,103.WANG Yong,MA Jinkui. Study on gas drainage technology of "hole instead of roadway" in roof directional long drilling[J]. Mining Safety and Environmental Protection,2019,46(5):95-98,103. [12] 陈功华,魏泽云,梁道富,等. 近距离煤层群高位定向长钻孔瓦斯抽采实践[J]. 矿业安全与环保,2019,46(5):66-69,74. doi: 10.3969/j.issn.1008-4495.2019.05.014CHEN Gonghua,WEI Zeyun,LIANG Daofu,et al. Practice of gas drainage by high-level directional long borehole in short distance coal seam group[J]. Mining Safety and Environmental Protection,2019,46(5):66-69,74. doi: 10.3969/j.issn.1008-4495.2019.05.014 [13] 李文刚, 王向东, 程志恒, 等. 基于高位定向长钻孔的采空区瓦斯抽采技术研究[J]. 煤炭工程, 2019, 51(8): 64-68.LI Wengang, WANG Xiangdong, CHENG Zhiheng, et al. Research on gas drainage technology in goaf based on high-level directional long drilling[J]. Coal Engineering, 2019, 51(8): 64-68. [14] 侯国培,郭昆明,岳茂庄,等. 高位定向长钻孔瓦斯抽采技术应用[J]. 煤炭工程,2019,51(1):64-67.HOU Guopei,GUO Kunming,YUE Maozhuang,et al. Application of high-level directional long borehole gas drainage technology[J]. Coal Engineering,2019,51(1):64-67. [15] 邸帅,王继仁,宋桂军. 上湾煤矿8.5 m采高综采面液压支架关键参数分析[J]. 安全与环境学报,2018,18(4):1316-1322.DI Shuai,WANG Jiren,SONG Guijun. Analysis on key parameters of hydraulic support in 8.5 m mining height fully-mechanized face of Shangwan Coal Mine[J]. Journal of Safety and Environment,2018,18(4):1316-1322. [16] 程详, 赵光明, 李英明, 等. 软岩保护层开采覆岩采动裂隙带演化及卸压瓦斯抽采研究[J]. 采矿与安全工程学报, 2020, 37(3): 533-542.CHENG Xiang, ZHAO Guangming, LI Yingming, et al. Study on evolution of mining fracture zone and pressure relief gas drainage in overburden during mining of soft rock protective layer[J]. Journal of Mining and Safety Engineering, 2020, 37 (3): 533-542. [17] 许满贵,魏攀,李树刚,等. “三软”煤层综采工作面覆岩运移和裂隙演化规律实验研究[J]. 煤炭学报,2017,42(增刊1):122-127.XU Mangui,WEI Pan,LI Shugang,et al. Experimental study on overburden migration and fracture evolution in fully mechanized mining face of "three soft" coal seam[J]. Journal of China Coal Society,2017,42(S1):122-127. [18] 高保彬,王晓蕾,朱明礼,等. 复合顶板高瓦斯厚煤层综放工作面覆岩“两带”动态发育特征[J]. 岩石力学与工程学报,2012,31(增刊1):3444-3451.GAO Baobin,WANG Xiaolei,ZHU Mingli,et al. Dynamic development characteristics of "two zones" of overburden in fully mechanized top coal caving face in high gas thick coal seam with composite roof[J]. Journal of Rock Mechanics and Engineering,2012,31(S1):3444-3451. [19] 李振峰,靳晓敏. 应用UDEC进行顶板“三带”范围划分的数值模拟研究[J]. 矿业安全与环保,2015,42(4):21-24. doi: 10.3969/j.issn.1008-4495.2015.04.006LI Zhenfeng,JIN Xiaomin. Numerical simulation of roof "three zones" range division by UDEC[J]. Mining Safety and Environmental Protection,2015,42(4):21-24. doi: 10.3969/j.issn.1008-4495.2015.04.006 [20] 苏士龙,杜跃,朱俊福,等. 基于离散元方法的深部巷道层状围岩稳定特性研究[J]. 采矿与岩层控制工程学报,2020,2(1):56-66.SU Shilong,DU Yue,ZHU Junfu,et al. Research on stability characteristics of layered surrounding rock in deep roadway based on discrete element method[J]. Journal of Mining and Strata Control Engineering,2020,2(1):56-66.