Research on large flow intelligent liquid supply system in fully mechanized working face
-
摘要: 针对综采工作面供液系统供液能力不足、压力波动大、系统运行稳定性差等问题,提出了一种免疫粒子群优化模糊神经网络PID(IPSO−FNN−PID)算法,设计了IPSO−FNN−PID控制器,实现了供液系统稳压控制。IPSO−FNN−PID算法将粒子群(PSO)算法和免疫算法(IA)引入模糊神经网络(FNN)PID控制器,针对FNN算法易陷入局部寻优问题,采用免疫粒子群(IPSO)算法优化FNN算法,通过在PSO算法中加入IA来提高PSO算法的收敛性,实现最优PID参数输出。为验证IPSO−FNN−PID控制器的有效性,选取传统PID控制器、Fuzzy−PID控制器、FNN−PID控制器进行比较,仿真结果表明:① IPSO−FNN−PID控制器对乳化液泵的控制效果最佳,其他3种控制器的上升时间、峰值时间和调节时间均比IPSO−FNN−PID控制器长,最大超调量均大于IPSO−FNN−PID控制器。② 在加入扰动信号后,IPSO−FNN−PID控制器具有较好的自适应性和鲁棒性,恢复到平稳状态仅用了1.2 s。③ 当利用传统PID和Fuzzy−PID控制器对乳化液泵进行控制时,振荡明显,超调量大,分别为41.2%,22.3%;当利用FNN−PID控制器对乳化液泵进行控制时,振荡明显减弱,超调量降低为17.6%,调节时间减少至2.68 s;当利用IPSO−FNN−PID控制器对乳化液泵进行控制时,几乎无振荡,超调量仅为5.22%,调节时间缩短至2.61 s,遇到干扰信号时稳定性更强。④ 在受到扰动信号时,负载干扰对IPSO−FNN−PID控制器的影响较小,且收敛迅速,鲁棒性大大提升,表明IPSO−FNN−PID控制器具备良好的抗扰动及扰动补偿能力,可满足供液系统的稳压控制要求。Abstract: The liquid supply system in fully mechanized working face has the problems of insufficient liquid supply capacity, large pressure fluctuation and poor system operation stability. In order to solve the above problems, an immune particle swarm optimization fuzzy neural network PID (IPSO-FNN-PID) algorithm is proposed. The IPSO-FNN-PID controller is designed to stabilize the pressure of the liquid supply system. In the IPSO-FNN-PID algorithm, a particle swarm optimization (PSO) algorithm and an immune algorithm (IA) are introduced into a fuzzy neural network (FNN) PID controller. The immune particle swarm optimization (IPSO) algorithm is used to solve the problem that the FNN algorithm is easy to fall into local optimization. The IA is added to the PSO algorithm to improve the convergence of the PSO algorithm. Therefore, the output of the optimal PID parameters is realized. In order to verify the effectiveness of the IPSO-FNN-PID controller, traditional PID controller, Fuzzy-PID controller and FNN-PID controller are selected to compare. The simulation results show that the IPSO-FNN-PID controller has the best control effect on the emulsion pump. The rise time, peak time and regulation time of the other three controllers are longer than the IPSO-FNN-PID controller. The maximum overshoot is greater than the IPSO-FNN-PID controller. After adding the disturbance signal, the IPSO-FNN-PID controller has good adaptability and robustness, and it takes only 1.2 s to restore to a stable state. When traditional PID and Fuzzy-PID controllers are used to control the emulsion pump, the oscillation is obvious and the overshoot is large, which are 41.2% and 22.3% respectively. When the FNN-PID controller is used to control the emulsion pump, the oscillation is significantly weakened, the overshoot is reduced to 17.6%, and the adjustment time is reduced to 2.68 s. When the IPSO-FNN-PID controller is used to control the emulsion pump, there is almost no oscillation. The overshoot is only 5.22%, the adjustment time is shortened to 2.61 s. And the stability is stronger when encountering interference signals. When the disturbance signal is received, the load disturbance has little effect on the IPSO-FNN-PID controller, the convergence is rapid, and the robustness is greatly improved. The results show that the IPSO-FNN-PID controller has good anti-disturbance and disturbance compensation capability, and can meet the pressure stabilization control requirements of the liquid supply system.
-
表 1 模糊控制规则
Table 1. Fuzzy control rules
EC E NB NM NS ZO PS PM PB NB PB PB PM PM PS PS ZO NM PB PM PM PS PS ZO NS NS PM PM PS PS ZO NS NS ZO PM PS PS ZO NS NS NM PS PS PS ZO NS NS NM NM PM PS ZO NS NS NM NM NB PB ZO NS NS NM NM NB NB 表 2 各控制器PID控制参数及动态特性比较
Table 2. Comparison of PID control parameters and dynamic characteristics of each controller
控制器 ${K}_{{\rm{p}}}$ ${K}_{{\rm{i}}}$ ${K}_{{\rm{d}}}$ $ \mathrm{\sigma } $/% ${t}_{{\rm{r}}}$/s ${t}_{{\rm{p}}}$/s ${t}_{{\rm{s}}}$/s PID 3.215 4.583 4.112 41.2 1.01 1.71 3.72 Fuzzy−PID 0.691 2.892 3.672 22.3 1.34 1.63 3.56 FNN−PID 0.882 3.000 3.127 17.6 0.98 1.55 2.68 IPSO−FNN−PID 1.218 2.614 3.745 5.22 0.89 1.31 2.61 -
[1] 付翔,王然风. 基于意识−情感−智能三位一体的煤矿供液过程控制[J]. 智能系统学报,2018,13(4):640-649.FU Xiang,WANG Ranfeng. Hydraulic fluid supply process control of coal mine based on consciousness, emotion,and intelligence[J]. CAAI Transactions on Intelligent Systems,2018,13(4):640-649. [2] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1-27.WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1-27. [3] 李然. 大采高工作面高压大流量乳化液泵的研制及应用[J]. 煤炭科学技术,2017,45(12):145-149.LI Ran. Research and development as well as application of high pressure and high flow emulsion pump to large mining height face[J]. Coal Science and Technology,2017,45(12):145-149. [4] 李然,王伟. 综采集成供液系统智能监测诊断技术现状与发展[J]. 煤炭科学技术,2016,44(3):91-95.LI Ran,WANG Wei. Status and development of intelligent monitoring and diagnosis technology for fully mechanized integrated pressure pumping system[J]. Coal Science and Technology,2016,44(3):91-95. [5] 罗文,杨俊彩. 神东矿区薄煤层安全高效开采技术研究[J]. 煤炭科学技术,2020,48(3):68-74.LUO Wen,YANG Juncai. Study on safety and efficient mining technology of thin coal seam in Shendong minging area[J]. Coal Science and Technology,2020,48(3):68-74. [6] 李然. 综采工作面智能供液技术及发展趋势[J]. 煤炭科学技术,2019,47(9):203-207.LI Ran. Intelligent fluid supply technology in fully-mechanized coal mining face and its development trend[J]. Coal Science and Technology,2019,47(9):203-207. [7] 李永明. 采煤工作面集中配液及远程供液系统应用[J]. 煤炭科学技术,2021,49(增刊1):183-187.LI Yongming. Application of centralized liquid distribution and remote liquid supply system in coal mining face[J]. Coal science and technology,2021,49(S1):183-187. [8] 张占东,张榕慧,姚利花,等. 面向液压支架动作过程的乳化液泵站多泵并联供液技术研究[J]. 煤矿机械,2019,40(10):35-37.ZHANG Zhandong,ZHANG Ronghui,YAO Lihua,et al. Study on multi-parallel pumps fluid feeding technology of emulsion pump station oriented to hydraulic support movement process[J]. Coal Mine Machine,2019,40(10):35-37. [9] 杨国来,朱礼浩,张晓丽,等. 乳化液泵的理论分析与数值模拟[J]. 液压与气动,2015(5):86-88,108. doi: 10.11832/j.issn.1000-4858.2015.05.019YANG Guolai,ZHU Llihao,ZHANG Xiaoli,et al. Theoretical analysis and numerical simulation of emulsion pump[J]. Chinese Hydraulics & Pneumatics,2015(5):86-88,108. doi: 10.11832/j.issn.1000-4858.2015.05.019 [10] 石建华,刘漫贤,张兆杰,等. 矿用乳化液泵站智能化改造与应用[J]. 煤矿机械,2021,42(2):139-141. doi: 10.13436/j.mkjx.202102044SHI Jianhua,LIU Manxian,ZHANG Zhaojie,et al. Intelligent transformation and application of mine emulsion pump station[J]. Coal Mine Machine,2021,42(2):139-141. doi: 10.13436/j.mkjx.202102044 [11] 陈伟,王存飞,边燕. 超大采高综采工作面乳化液泵站系统[J]. 工矿自动化,2021,47(4):6-12. doi: 10.13272/j.issn.1671-251x.2020120020CHEN Wei,WANG Cunfei,BIAN Yan. Emulsion pump station system for super high fully mechanized working face[J]. Industry and Mine Automation,2021,47(4):6-12. doi: 10.13272/j.issn.1671-251x.2020120020 [12] 李文华,刘娇,柴博. 节能液压泵模糊PID控制系统研究与仿真[J]. 控制工程,2017,24(7):1347-1351. doi: 10.14107/j.cnki.kzgc.150500LI Wenhua,LIU Jiao,CHAI Bo. Research and simulation of energy efficient fuzzy PID control system for hydraulic pump stations[J]. Control Engineering of China,2017,24(7):1347-1351. doi: 10.14107/j.cnki.kzgc.150500 [13] 王建国,周燕飞. 泵控马达系统的模糊PID控制与仿真[J]. 机械设计与制造工程,2015,44(11):44-47. doi: 10.3969/j.issn.2095-509X.2015.11.010WANG Jianguo,ZHOU Yanfei. Fuzzy PID control and simulation of pump - contro-motor system[J]. Mechanical Design and Manufacturing Engineering,2015,44(11):44-47. doi: 10.3969/j.issn.2095-509X.2015.11.010 [14] 胡相捧,刘新华,庞义辉,等. 基于BP神经网络PID的液压支架初撑力自适应控制[J]. 矿业科学学报,2020,5(6):662-671. doi: 10.19606/j.cnki.jmst.2020.06.009HU Xiangpeng,LIU Xinhua,PANG Yihui,et al. Adaptive control of setting load of hydraulic support based on BP neural network PID[J]. Journal of Mining and Science,2020,5(6):662-671. doi: 10.19606/j.cnki.jmst.2020.06.009 [15] 李浩楠,刘勇. 模糊神经网络的优化及其应用[J]. 哈尔滨理工大学学报,2020,25(6):142-149. doi: 10.15938/j.jhust.2020.06.021LI Haonan,LIU Yong. Optimization and application of fuzzy neural network[J]. Journal of Harbin University of Technology,2020,25(6):142-149. doi: 10.15938/j.jhust.2020.06.021