留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进完备集成经验模态分解的钢丝绳缺陷漏磁检测方法

钟小勇 陈科安 张小红

钟小勇,陈科安,张小红. 基于改进完备集成经验模态分解的钢丝绳缺陷漏磁检测方法[J]. 工矿自动化,2022,48(7):118-124.  doi: 10.13272/j.issn.1671-251x.2022020037
引用本文: 钟小勇,陈科安,张小红. 基于改进完备集成经验模态分解的钢丝绳缺陷漏磁检测方法[J]. 工矿自动化,2022,48(7):118-124.  doi: 10.13272/j.issn.1671-251x.2022020037
ZHONG Xiaoyong, CHEN Ke'an, ZHANG Xiaohong. Steel wire rope defect magnetic flux leakage detection method based on improved complementary ensemble empirical mode decomposition[J]. Journal of Mine Automation,2022,48(7):118-124.  doi: 10.13272/j.issn.1671-251x.2022020037
Citation: ZHONG Xiaoyong, CHEN Ke'an, ZHANG Xiaohong. Steel wire rope defect magnetic flux leakage detection method based on improved complementary ensemble empirical mode decomposition[J]. Journal of Mine Automation,2022,48(7):118-124.  doi: 10.13272/j.issn.1671-251x.2022020037

基于改进完备集成经验模态分解的钢丝绳缺陷漏磁检测方法

doi: 10.13272/j.issn.1671-251x.2022020037
基金项目: 国家自然科学基金项目(51665019, 61763017);江西省研究生创新专项资金项目(YC2020-S479)。
详细信息
    作者简介:

    钟小勇(1964—),男,江西遂川人,教授级高级工程师,硕士,主要研究方向为安全智能诊断与无损检测、嵌入式系统及应用,E-mail:zhongxy52@jxust.edu.cn

  • 中图分类号: TD534.6

Steel wire rope defect magnetic flux leakage detection method based on improved complementary ensemble empirical mode decomposition

  • 摘要: 钢丝绳小缺陷信号往往被淹没在股波噪声中,存在钢丝绳小缺陷检测困难、易漏检等问题。针对该问题,提出了一种基于改进完备集成经验模态分解(ICEEMD)的钢丝绳缺陷漏磁检测方法。为了避免钢丝绳表面润滑剂或尘埃对检测信号造成影响,采用电磁检测法。将ICEEMD、小波阈值滤波(WTF)、维纳滤波(WF)相结合,得到ICEEMD−WTF−WF多级降噪方法:通过ICEEMD分解钢丝绳漏磁信号,得到本征模态函数(IMF)分量;计算IMF分量的能量比、排列熵、互相关系数,取出IMF趋势分量和IMF股波噪声分量,并对股波噪声分量进行WTF,筛选有用的IMF分量重构信号;对重构后的信号进行WF,去除随机噪声。提取降噪后的缺陷特征值,输入BP神经网络并进行训练,识别钢丝绳缺陷漏磁信号。实验结果表明:ICEEMD−WTF−WF多级降噪方法对钢丝绳漏磁信号具有良好的降噪效果,信噪比、峭度指标优于WTF、移动平均滤波和WF;基于ICEEMD−WTF−WF的BP神经网络模型检测耗时短,对小缺陷的平均准判率达到98.13%,能较好地满足钢丝绳缺陷检测要求。

     

  • 图  1  钢丝绳缺陷漏磁检测系统

    Figure  1.  Magnetic flux leakage detection system for steel wire rope defects

    图  2  钢丝绳小缺陷漏磁信号

    Figure  2.  Magnetic leakage signal of small defects in steel wire rope

    图  3  IMF分量

    Figure  3.  IMF components

    图  4  IMF2分量降噪前的信号

    Figure  4.  IMF2 component signal before denoising

    图  5  IMF2分量降噪后的信号

    Figure  5.  IMF2 component signal after denoising

    图  6  钢丝绳缺陷漏磁信号

    Figure  6.  Magnetic flux leakage signal of steel wire rope defect

    图  7  基于ICEEMD−WTF−WF的误差收敛曲线

    Figure  7.  Error convergence curves based on ICEEMD−WTF−WF

    图  8  基于ICEEMD−WTF−WF和WTF的分类误差对比

    Figure  8.  Classification error comparison between ICEEMD−WTF−WF and WTF

    图  9  基于WF和移动平均滤波的分类误差对比

    Figure  9.  Classification error comparison between WF and moving average filtering

    表  1  各IMF分量的互相关系数、排列熵

    Table  1.   The cross-correlation coefficient and permutation entropy of each IMF component

    IMF分量互相关系数排列熵IMF分量互相关系数排列熵
    IMF10.49470.9940IMF50.01720.5932
    IMF20.93130.9538IMF60.00240.4048
    IMF30.27730.8591IMF70.00480.4181
    IMF40.10580.6942IMF80.00660
    下载: 导出CSV

    表  2  各IMF分量所占的能量比

    Table  2.   Energy ratio of each IMF component

    IMF分量能量值能量比/%IMF分量能量值能量比/%
    IMF11.75×1075.82IMF53.98×1050.13
    IMF22.58×10885.86IMF64.45×1050.15
    IMF31.95×1076.49IMF79.31×1040.03
    IMF44.34×1061.44IMF82.10×1050.07
    下载: 导出CSV

    表  3  不同滤波方法对比

    Table  3.   Comparison of different filtering methods

    滤波方法信噪比互相关系数均方根误差峭度
    ICEEMD−WTF−WF20.1520.5263508.7484.240
    WTF19.5070.3728543.9059.205
    移动平均
    滤波
    8.4060.3065292.995.184
    WF11.6370.6771271.2820.063
    下载: 导出CSV

    表  4  训练样本数据(部分)

    Table  4.   Training sample data (part)

    波峰值波谷值峰峰值波宽波形下
    面积
    波形
    能量
    0.47910.22930.31600.60000.43970.2847
    1.00000.01941.00000.16671.00000.2482
    0.86830.00000.92650.16670.98890.2468
    0.63000.02090.77070.46670.62290.5045
    0.55970.14260.67780.33330.55540.2376
    0.78380.01070.86990.20000.97740.2976
    0.58950.08440.71980.26670.63630.2288
    0.26410.64340.29130.93330.27050.2767
    0.55210.11830.49030.90000.57791.0000
    0.57000.15660.67840.53330.69190.7089
    0.44390.46510.47500.46670.43610.2014
    0.59350.05540.72750.60000.74430.8808
    0.55740.11020.67440.63330.68670.8025
    0.55680.11110.68850.70000.67710.9242
    0.64250.19920.70590.30000.69850.3022
    下载: 导出CSV

    表  5  基于4种滤波方法的小缺陷准判率对比

    Table  5.   Comparison of small defect accuracy rate based on four filtering methods

    滤波方法检测
    时间/s
    特征
    数据/组
    测试
    数据/组
    检测正确
    组数
    准判
    率/%
    ICEEMD−WTF−WF0.223025815014798.00
    WTF0.244925815012885.33
    移动平均滤波0.217425815013288.00
    WF0.236325815010972.67
    下载: 导出CSV

    表  6  多组实验数据实验结果对比

    Table  6.   Comparison of experimental results of multiple sets of experimental data %

    实验
    序号
    准判率
    ICEEMD−WTF−WFWTF移动平均滤波WF
    第1组97.3384.6766.6762.00
    第2组98.6788.6768.0061.33
    第3组100.0088.6779.3364.67
    第4组96.6784.0074.0062.00
    第5组98.0085.3388.0072.67
    平均值98.1382.2775.2064.53
    下载: 导出CSV
  • [1] 谢进,任文清. 煤矿钢丝绳芯输送带检测系统[J]. 工矿自动化,2021,47(增刊1):69-71.

    XIE Jin,REN Wenqing. Coal mine steel cord conveyor belt detection system[J]. Industry and Mine Automation,2021,47(S1):69-71.
    [2] 路正雄,郭卫,张传伟,等. 平行磁化NdFeB钢丝绳无损检测仪开发[J]. 西安科技大学学报,2021,41(1):139-144. doi: 10.13800/j.cnki.xakjdxxb.2021.0118

    LU Zhengxiong,GUO Wei,ZHANG Chuanwei,et al. Development of a new wire rope non-destructive tester using parallely magnetized NdFeB[J]. Journal of Xi'an University of Science and Technology,2021,41(1):139-144. doi: 10.13800/j.cnki.xakjdxxb.2021.0118
    [3] 田劼,宋姗. 改进粒子群优化小波阈值的矿用钢丝绳损伤信号处理方法研究[J]. 煤炭工程,2020,52(4):103-107.

    TIAN Jie,SONG Shan. Processing method for mine wire rope damage signal based on improved particle swarm optimization wavelet threshold[J]. Coal Engineering,2020,52(4):103-107.
    [4] 王红尧,吴佳奇,李长恒,等. 矿用钢丝绳损伤检测信号处理方法研究[J]. 工矿自动化,2021,47(2):58-62. doi: 10.13272/j.issn.1671-251x.17677

    WANG Hongyao,WU Jiaqi,LI Changheng,et al. Research on signal processing method of mine wire rope damage detection[J]. Industry and Mine Automation,2021,47(2):58-62. doi: 10.13272/j.issn.1671-251x.17677
    [5] 田劼,王洋洋,郭红飞,等. 基于漏磁检测的钢丝绳探伤原理与方法研究[J]. 煤炭工程,2021,53(9):95-100.

    TIAN Jie,WANG Yangyang,GUO Hongfei,et al. Principle and method of mine steel wire rope flaw detection based on magnetic flux detection[J]. Coal Engineering,2021,53(9):95-100.
    [6] 谢飞,张雪英,乔铁柱,等. 一种钢丝绳芯输送带早期故障检测方法[J]. 工矿自动化,2015,41(1):58-62. doi: 10.13272/j.issn.1671-251x.2015.01.015

    XIE Fei,ZHANG Xueying,QIAO Tiezhu,et al. An early fault detection method of steel cord conveyor belt[J]. Industry and Mine Automation,2015,41(1):58-62. doi: 10.13272/j.issn.1671-251x.2015.01.015
    [7] 李腾宇,寇子明,吴娟,等. 超千米深井提升机可视化监测系统应用[J]. 煤炭学报,2020,45(增刊2):1069-1078. doi: 10.13225/j.cnki.jccs.zn20.0324

    LI Tengyu,KOU Ziming,WU Juan,et al. Monitoring system of the hoist in the over kilometer deep shaft[J]. Journal of China Coal Society,2020,45(S2):1069-1078. doi: 10.13225/j.cnki.jccs.zn20.0324
    [8] 傅其凤,李松,路贵兰. 改进阈值去噪方法在电梯钢丝绳断丝检测中的应用[J]. 机床与液压,2019,47(15):194-196,138. doi: 10.3969/j.issn.1001-3881.2019.15.041

    FU Qifeng,LI Song,LU Guilan. Application of improved threshold denoising method in broken steel wire inspection[J]. Machine Tool & Hydraulics,2019,47(15):194-196,138. doi: 10.3969/j.issn.1001-3881.2019.15.041
    [9] 黄天然,谭建平,薛少华,等. EMD与排列熵在提升机跳绳故障诊断中的应用[J]. 传感器与微系统,2020,39(7):150-153,160. doi: 10.13873/J.1000-9787(2020)07-0150-04

    HUANG Tianran,TAN Jianping,XUE Shaohua,et al. Application of EMD and permutation entropy in fault diagnosis of hoist wire jumping rope[J]. Transducer and Microsystem Technologies,2020,39(7):150-153,160. doi: 10.13873/J.1000-9787(2020)07-0150-04
    [10] 杨智广,费鸿禄,胡刚. 隧道掘进爆破振动对围岩影响的HHT分析[J]. 中国安全生产科学技术,2019,15(9):121-127.

    YANG Zhiguang,FEI Honglu,HU Gang. HHT analysis on influence of blasting vibration during tunnel excavation on surrounding rock[J]. Journal of Safety Science and Technology,2019,15(9):121-127.
    [11] COLOMINAS M A,SCHLOTTHAUER G,TORRES M E. Improved complete ensemble EMD:a suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control,2014,14:19-29. doi: 10.1016/j.bspc.2014.06.009
    [12] 张丹威,王晓东,黄国勇. 相关系数SVD增强随机共振的单向阀故障诊断[J]. 电子学报,2018,46(11):2696-2704. doi: 10.3969/j.issn.0372-2112.2018.11.017

    ZHANG Danwei,WANG Xiaodong,HUANG Guoyong. Check valve fault diagnosis with correlation coefficient SVD enhanced stochastic resonance[J]. Acta Electronica Sinica,2018,46(11):2696-2704. doi: 10.3969/j.issn.0372-2112.2018.11.017
    [13] 宋洋,杨杰,宋锦焘,等. 基于CEEMDAN−PE−LSTM的混凝土坝变形预测[J]. 水利水运工程学报,2021(3):41-49. doi: 10.12170/20200520003

    SONG Yang,YANG Jie,SONG Jintao,et al. Concrete dam deformation prediction based on CEEMDAN−PE−LSTM model[J]. Hydro-Science and Engineering,2021(3):41-49. doi: 10.12170/20200520003
    [14] 张国安,何平,余焕伟,等. 基于广义延拓的电梯振动信号优化处理与分析[J]. 中国特种设备安全,2018,34(10):4-8,11. doi: 10.3969/j.issn.1673-257X.2018.10.002

    ZHANG Guo'an,HE Ping,YU Huanwei,et al. Optimization and analysis of elevator vibration signal based on generalized extension method[J]. China Special Equipment Safety,2018,34(10):4-8,11. doi: 10.3969/j.issn.1673-257X.2018.10.002
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  76
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-20
  • 修回日期:  2022-07-08
  • 网络出版日期:  2022-05-19

目录

    /

    返回文章
    返回