留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TopHat加权引导滤波的Retinex矿井图像增强算法

洪炎 朱丹萍 龚平顺

洪炎,朱丹萍,龚平顺. 基于TopHat加权引导滤波的Retinex矿井图像增强算法[J]. 工矿自动化,2022,48(8):43-49.  doi: 10.13272/j.issn.1671-251x.2022020029
引用本文: 洪炎,朱丹萍,龚平顺. 基于TopHat加权引导滤波的Retinex矿井图像增强算法[J]. 工矿自动化,2022,48(8):43-49.  doi: 10.13272/j.issn.1671-251x.2022020029
HONG Yan, ZHU Danping, GONG Pingshun. Retinex mine image enhancement algorithm based on TopHat weighted guided filtering[J]. Journal of Mine Automation,2022,48(8):43-49.  doi: 10.13272/j.issn.1671-251x.2022020029
Citation: HONG Yan, ZHU Danping, GONG Pingshun. Retinex mine image enhancement algorithm based on TopHat weighted guided filtering[J]. Journal of Mine Automation,2022,48(8):43-49.  doi: 10.13272/j.issn.1671-251x.2022020029

基于TopHat加权引导滤波的Retinex矿井图像增强算法

doi: 10.13272/j.issn.1671-251x.2022020029
基金项目: 安徽省自然科学基金资助项目(2108085ME158,1808085MF169);安徽理工大学研究生创新基金项目(2021CX2071)。
详细信息
    作者简介:

    洪炎(1979—),男,重庆万州人,教授,博士,研究方向为图像处理、痕量气体检测,E-mail:hong5212724@163.com

    通讯作者:

    朱丹萍(1998—),女,浙江金华人,硕士研究生,研究方向为图像处理,E-mail:zzdp_123@163.com

  • 中图分类号: TD67

Retinex mine image enhancement algorithm based on TopHat weighted guided filtering

  • 摘要: 煤矿井下光源分布不均、整体光线弱导致图像亮度低、不清晰,传统Retinex算法在处理矿井低照度图像时存在细节丢失、边缘模糊和光晕等问题。针对上述问题,提出了一种基于TopHat加权引导滤波的Retinex算法(THWGIF−Retinex)对矿井图像进行增强。首先将图像从RGB空间转换到HSV空间,并将其分离成色调、饱和度、亮度3个通道分量。其次,利用TopHat变换改进加权引导滤波的权重因子,进而从亮度分量中提取出图像的光照分量,实现光照分量的边缘增强。然后,采用自适应Gamma校正函数校正光照分量和饱和度分量,并通过Retinex算法从光照分量中获取反射分量,进一步提升图像光源处的细节和色彩效果;最后,合并色调分量、校正后的饱和度分量、反射分量并转换到RGB空间,得到增强的矿井图像。从主观评价和客观评价2个方面对THWGIF−Retinex算法、多尺度Retinex(MSR)算法、加权引导滤波的Retinex(WGIF−Retinex)算法进行对比验证。主观评价结果表明:对于无强光直射的矿井低照度原始图像,经THWGIF−Retinex算法增强后的图像色彩还原度较高,且图像边缘更清晰,视觉效果明显增强。对于有强光直射的矿井低照度原始图像,THWGIF−Retinex算法对光晕有很好的改善效果,且在还原暗区域的细节信息和清晰度上优于WGIF−Retinex算法。客观评价结果表明:对于无强光直射的矿井低照度图像,经THWGIF−Retinex算法增强后的图像信息熵提高了12.50%,平均梯度提高了109.07%,标准差提高了52.44%,无参考结构清晰度(NRSS)提高了45.46%。对于有强光直射的矿井低照度图像,与MSR算法相比,经THWGIF−Retinex算法增强后的图像信息熵提高了1.24%,平均梯度提高了81.44%,标准差提高了18.23%,NRSS提高了36.67%;与WGIF−Retinex算法相比,THWGIF−Retinex算法在信息熵方面有所降低,但在平均梯度和NRSS方面有较大改善,分别提高了72.34%和23.87%。

     

  • 图  1  基于THWGIF−Retinex算法的矿井图像增强流程

    Figure  1.  Mine image enhancement process based on THWGIF-Retinex algorithm

    图  2  不同算法的滤波效果对比

    Figure  2.  Comparison of filtering effects of different algorithms

    图  3  不同γ的增强效果对比

    Figure  3.  Comparison of enhancement effects of different γ

    图  4  不同算法下矿井图像1增强效果对比

    Figure  4.  Comparison of enhancement effects of mine image 1 under different algorithms

    图  5  不同算法下矿井图像1灰度直方图对比

    Figure  5.  Comparison of gray histogram of mine image 1 under different algorithms

    图  6  不同算法下矿井图像2增强效果对比

    Figure  6.  Comparison of enhancement effects of mine image 2 under different algorithms

    图  7  不同算法下矿井图像2灰度直方图对比

    Figure  7.  Comparison of gray histogram of mine image 2 under different algorithms

    表  1  矿井图像1客观评价结果

    Table  1.   Objective evaluation results of mine image 1

    图像信息熵平均梯度标准差NRSS
    原始图像6.427 93.599 526.060 70.428 2
    MSR算法增强后图像6.839 33.887 132.778 30.422 7
    WGIF−Retinex算法增强后图像7.311 75.347 240.859 00.551 2
    THWGIF−Retinex算法增强后图像7.231 67.525 639.728 80.622 9
    下载: 导出CSV

    表  2  矿井图像2客观评价结果

    Table  2.   Objective evaluation results of mine image 2

    图像信息熵平均梯度标准差NRSS
    原始图像6.511 84.855 333.418 90.399 5
    MSR算法增强后图像7.263 54.984 236.312 50.442 0
    WGIF−Retinex算法增强后图像7.455 95.247 346.694 20.487 7
    THWGIF−Retinex算法增强后图像7.355 09.043 442.932 80.604 1
    下载: 导出CSV
  • [1] 尹小英. 浅析智慧矿山综合监控系统设计[J]. 内蒙古煤炭经济,2020(20):127-128. doi: 10.3969/j.issn.1008-0155.2020.20.063

    YIN Xiaoying. Brief analysis on the design of intelligent mine comprehensive monitoring system[J]. Inner Mongolia Coal Economy,2020(20):127-128. doi: 10.3969/j.issn.1008-0155.2020.20.063
    [2] 刘晓阳,乔通,乔智. 基于双边滤波和Retinex算法的矿井图像增强方法[J]. 工矿自动化,2017,43(2):49-54.

    LIU Xiaoyang,QIAO Tong,QIAO Zhi. Image enhancement method of mine based on bilateral filtering and Retinex algorithm[J]. Industry and Mine Automation,2017,43(2):49-54.
    [3] 张立亚,郝博南,孟庆勇,等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报,2020,45(增刊1):532-540. doi: 10.13225/j.cnki.jccs.2020.0514

    ZHANG Liya,HAO Bonan,MENG Qingyong,et al. Method of image enhancement in coal mine based on improved Retinex fusion algorithm in HSV space[J]. Journal of China Coal Society,2020,45(S1):532-540. doi: 10.13225/j.cnki.jccs.2020.0514
    [4] HU Haokun, CAO Wei, YUAN Jieyu, et al. A low-illumination image enhancement algorithm based on morphological-Retinex(MR) operator[C].IEEE/ACIS 6th International Conference on Big Data, Cloud Computing, and Data Science, Zhuhai, 2021: 66-72.
    [5] 智宁,毛善君,李梅. 基于照度调整的矿井非均匀照度视频图像增强算法[J]. 煤炭学报,2017,42(8):2190-2197.

    ZHI Ning,MAO Shanjun,LI Mei. Enhancement algorithm based on illumination adjustment for non-uniform illuminance video images in coal mine[J]. Journal of China Coal Society,2017,42(8):2190-2197.
    [6] 李晓宇,吕进来,郝晓丽. 一种改进的Retinex矿井图像增强算法[J]. 科学技术与工程,2020,20(29):12028-12034. doi: 10.3969/j.issn.1671-1815.2020.29.030

    LI Xiaoyu,LYU Jinlai,HAO Xiaoli. An improved enhancement algorithm of mine image based on Retinex[J]. Science Technology and Engineering,2020,20(29):12028-12034. doi: 10.3969/j.issn.1671-1815.2020.29.030
    [7] MU Qi,WANG Xinyue,WEI Yanyan,et al. Low and non-uniform illumination color image enhancement using weighted guided image filtering[J]. Computational Visual Media,2021,7(4):529-546. doi: 10.1007/s41095-021-0232-x
    [8] WANG Guoqing,WANG Jun,LI Ming,et al. Hand vein image enhancement based on multi-scale top-hat transform[J]. Cybernetics and Information Technologies,2016,16(2):125-134. doi: 10.1515/cait-2016-0025
    [9] SHI Haiyan,NGAIMING K,GU Fang,et al. Gradient-guided color image contrast and saturation enhancement[J]. International Journal of Advanced Robotic Systems,2017,14(3):1-5.
    [10] 李鹏飞,何小海,卿粼波,等. 暗通道融合亮通道优化的夜间图像去雾算法[J]. 液晶与显示,2021,36(4):596-604. doi: 10.37188/CJLCD.2020-0208

    LI Pengfei,HE Xiaohai,QING Linbo,et al. Nighttime dehazing algorithm of dark channel and bright channel fusion optimization[J]. Chinese Journal of Liquid Crystals and Displays,2021,36(4):596-604. doi: 10.37188/CJLCD.2020-0208
    [11] 刘颖,刘佳琳,刘卫华,等. 基于加权引导滤波的Retinex刑侦图像增强[J]. 西安邮电大学学报,2018,23(5):30-36.

    LIU Ying,LIU Jialin,LIU Weihua,et al. A Retinex criminal investigation image enhanced algorithm based on weighted guided filtering[J]. Journal of Xi'an University of Posts and Telecommunications,2018,23(5):30-36.
    [12] 许凤麟,苗玉彬,张铭. 基于彩色加权引导滤波−Retinex算法的导航图像增强[J]. 上海交通大学学报,2019,53(8):921-927.

    XU Fenglin,MIAO Yubin,ZHANG Ming. Navigation image enhancement based on color weighted guided image filtering-Retinex algorithm[J]. Journal of Shanghai Jiaotong University,2019,53(8):921-927.
    [13] 汤子麟,刘翔,张星. 光照不均匀图像的自适应增强算法[J]. 计算机工程与应用,2021,57(21):216-223. doi: 10.3778/j.issn.1002-8331.2010-0368

    TANG Zilin,LIU Xiang,ZHANG Xing. Adaptive enhancement algorithm for non-uniform illumination images[J]. Computer Engineering and Applications,2021,57(21):216-223. doi: 10.3778/j.issn.1002-8331.2010-0368
    [14] HERRERA-ARELLANO M A,PEREGRINA-BARRETO H,TEROL-VILLALOBOS I. Visible-NIR image fusion based on top-hat transform[J]. IEEE Transactions on Image Processing,2021,30:4962-4972. doi: 10.1109/TIP.2021.3077310
    [15] SENGUPTA D,BISWAS A,GUPTA P. Non-linear weight adjustment in adaptive gamma correction for image contrast enhancement[J]. Multimedia Tools and Applications,2021,80(3):3835-3862. doi: 10.1007/s11042-020-09583-1
    [16] 龙鑫,何国田. 基于多层融合和细节恢复的图像增强方法[J]. 计算机应用研究,2020,37(2):584-587.

    LONG Xin,HE Guotian. Image enhancement method based on multi-layer fusion and detail restoration[J]. Application Research of Computers,2020,37(2):584-587.
    [17] WANG Ping,WANG Zhiwen,LYU Dong,et al. Low illumination color image enhancement based on Gabor filtering and Retinex theory[J]. Multimedia Tools and Applications,2021,80(4):17705-17719.
    [18] ZHAO Chaoyue,JIA Ruisheng,LIU Qingming,et al. Image dehazing method via a cycle generative adversarial network[J]. IET Image Processing,2020,14(2):4240-4247.
    [19] 陈宏辉,胡小平,彭向前. 基于改进MSR的小波变换图像增强算法[J]. 计算机科学与应用,2021,11(4):1149-1156. doi: 10.12677/CSA.2021.114118

    CHEN Honghui,HU Xiaoping,PENG Xiangqian. Wavelet transform image enhancement algorithm based on improved MSR[J]. Computer Science and Application,2021,11(4):1149-1156. doi: 10.12677/CSA.2021.114118
    [20] 景文博,邹欢欢,张家铭,等. 基于相位差异法的简易光学系统的图像复原方法[J]. 光子学报,2019,48(9):87-98.

    JING Wenbo,ZOU Huanhuan,ZHANG Jiaming,et al. Simple optical system image restoration method based on phase diversity[J]. Acta Photonica Sinica,2019,48(9):87-98.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  56
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 修回日期:  2022-08-09
  • 网络出版日期:  2022-06-02

目录

    /

    返回文章
    返回