Design of coal mine safety monitoring system logical control automatic detection device
-
摘要: 煤矿安全监控系统逻辑控制检测包括控制(断电、闭锁)是否正确执行和控制执行时间是否达标两项。由于不同厂家的监控系统通信机制、通信协议各不相同,难以实现系统逻辑控制功能标准化检测,且人工检测效率低、误差大。为解决上述问题,在分析行业标准和安标检测要求的基础上,设计了一种煤矿安全监控系统逻辑控制自动检测装置。该装置不受通信协议及总线形式限制,通过串口通信方式控制多台传感器发出闭锁信号,同时通过I/O接口采集系统逻辑控制执行结果(断电器是否断电),记录闭锁信号发生时刻及逻辑控制执行结果发生时刻,从而判定系统逻辑控制执行时间,并在每条逻辑控制执行之后恢复各传感器及断电器到初始状态。测试结果表明:该装置能可靠、准确地检测控制执行时间;当测试近300条控制逻辑时,自动检测时间约为2 h,提高了检测效率。Abstract: The logical control detection of coal mine safety monitoring system includes whether the control (power off, interlocking) is executed correctly and whether the control execution time reaches the standard. Because the communication mechanism and communication protocol of monitoring system from different manufacturers are different, it is difficult to realize the standardized detection of system logical control function. And the manual detection efficiency is low and the error is large. In order to solve the above problems, based on the analysis of industry standards and safety standard detection requirements, a coal mine safety monitoring system logical control automatic detection device is designed. The device is not limited by a communication protocol and a bus form. It controls multiple sensors to send out interlocking signals in a serial port communication mode. At the same time, I/O interface is used to collect the execution results of system logical control (whether the circuit breaker is powered off). The device records the generation time of the interlocking signals and the generation time of the logical control execution result so as to determine the logical control execution time of the system. The device restores each sensor and the breaker to an initial state after each logical control is executed. The test results show that the device can detect the control execution time reliably and accurately. When testing nearly 300 logical controls, the automatic detection time is about 2 hours, which improves the detection efficiency.
-
表 1 甲烷风电闭锁检测涉及的传感器及控制条件
Table 1. Sensors and control conditions related to methane wind electric interlocking detection
传感器 控制条件 掘进工作面甲烷传感器 体积分数达到1.5%;
体积分数达到3.0%;
故障掘进工作面回风流甲烷传感器 体积分数达到1.5%;
体积分数达到3.0%;
故障被串掘进工作面进风流甲烷传感器 体积分数达到0.5%;
故障局部通风机开停传感器或风筒风量传感器 局部通风机停止运转;
风筒风量低于规定值表 2 煤与瓦斯突出闭锁检测涉及的传感器及控制条件
Table 2. Sensors and control conditions related to coal and gas outburst interlocking detection
传感器 控制条件 掘进工作面甲烷传感器 故障;
浓度迅速升高;
体积分数达到1.0%掘进巷道回风流甲烷传感器 浓度迅速升高;
体积分数达到1.0%掘进巷道回风流风速传感器 风速不低于正常值 表 3 煤矿安全监控系统逻辑控制模式及控制执行时间判定
Table 3. Logical control mode and control execution time determination of coal mine safety monitoring system
控制模式 控制执行时间判定 单台传感器对应
单台断电器传感器达到控制条件时开始计时,断电器断电则结束计时 单台传感器对应
多台断电器传感器达到控制条件时开始计时,所有断电器均断电则结束计时 多台传感器对应
单台断电器第1台传感器达到控制条件时开始计时,断电器断电则结束计时 多台传感器对应
多台断电器第1台传感器达到控制条件时开始计时,所有断电器断电则结束计时 表 4 控制执行时间对比
Table 4. Control execution time comparison
s 断电模式 人工检测 自动检测 本地断电 0.45 0.46 异地断电 1.32 1.25 -
[1] 蔡崇. 煤矿安全监控系统风电瓦斯闭锁实现方式的探讨[J]. 工矿自动化,2010,36(7):75-78.CAI Chong. Discussion of realization method of gas locking for ventilation and power supply of safety monitoring and control system of coal mine[J]. Industry and Mine Automation,2010,36(7):75-78. [2] 郝宏伟. 煤矿双巷掘进甲烷风电闭锁本地断电方案设计[J]. 煤矿现代化,2020(1):85-86,90. doi: 10.3969/j.issn.1009-0797.2020.01.030HAO Hongwei. Design of methane and wind power lockout for double roadway driving in coal mine[J]. Coal Mine Modernization,2020(1):85-86,90. doi: 10.3969/j.issn.1009-0797.2020.01.030 [3] 戴万波. 安全监控系统瓦斯电闭锁检测装置设计[J]. 工矿自动化,2021,47(8):121-127.DAI Wanbo. Design of gas electric locking detection device for safety monitoring system[J]. Industry and Mine Automation,2021,47(8):121-127. [4] 任吉凯,路培超,杨相玉. 浅析“煤矿安全监控系统升级改造技术方案”[J]. 山东工业技术,2017(15):47. doi: 10.16640/j.cnki.37-1222/t.2017.15.043REN Jikai,LU Peichao,YANG Xiangyu. Analysis of 'Technical Scheme for Upgrading and Reforming Coal Mine Safety Monitoring System'[J]. Shandong Industrial Technology,2017(15):47. doi: 10.16640/j.cnki.37-1222/t.2017.15.043 [5] 汪丛笑. 煤矿安全监控系统升级改造及关键技术研究[J]. 工矿自动化,2017,43(2):1-6.WANG Congxiao. Research on upgrading of coal mine safety monitoring and control system and its key technologies[J]. Industry and Mine Automation,2017,43(2):1-6. [6] 王乐军. 数字式安全监控系统关键参数检测装置设计[J]. 电子设计工程,2022,30(8):76-81. doi: 10.14022/j.issn1674-6236.2022.08.016WANG Lejun. Design of key parameters' detection device for digital safety monitoring system[J]. Electronic Design Engineering,2022,30(8):76-81. doi: 10.14022/j.issn1674-6236.2022.08.016 [7] 汪学明,徐娟,张立斌,等. 煤矿井下监控分站在线性能检测装置的设计[J]. 工矿自动化,2010,36(1):6-8.WANG Xueming,XU Juan,ZHANG Libin,et al. Design of on-line parameters' detection device for underground monitoring substation[J]. Industry and Mine Automation,2010,36(1):6-8. [8] 张金豪. 煤矿井下异地快速断电的实现[J]. 煤矿安全,2017,48(8):106-108.ZHANG Jinhao. Realization of fast power off in another place in coal mine[J]. Safety in Coal Mines,2017,48(8):106-108. [9] 刘炎. 缩短煤矿安全监控系统异地控制时间的方法研究[C]//第24届全国煤矿自动化与信息化学术会议暨第6届中国煤矿信息化与自动化高层论坛论文集, 太原, 2014: 37-42.LIU Yan. Research on method of shortening remote control time of coal mine safety monitoring system[C]//The 24th National Coal Mine Automation and Informatization Academic Conference and the 6th China Coal Mine Informatization and Automation High-level Forum Proceedings, Taiyuan, 2014: 37-42. [10] 张伟杰. 基于多线程的数据采集效率优化实现[J]. 煤矿安全,2019,50(5):113-115.ZHANG Weijie. Implementation of data acquisition efficiency optimization based on multi-threading[J]. Safety in Coal Mines,2019,50(5):113-115.