Intelligent fault diagnosis of rolling bearings based on deep network
-
摘要: 针对变工况环境中滚动轴承的源域与目标域数据分布不同及目标域样本不含标签的问题,提出一种基于深度自适应迁移学习网络(DATLN)的滚动轴承故障诊断模型。首先,搭建领域共享特征提取网络,采用多尺度卷积神经网络(MSCNN)抑制噪声的干扰,进而有效提取振动信号中蕴含的局部故障信息;其次,结合双向长短时记忆网络(BiLSTM)进一步学习局部故障信息中的时间特征;最后,引入迁移学习,以域对抗(DA)训练结合自适应联合分布(AJD)度量构建域自适应模块,通过最大化域分类损失和最小化AJD距离,实现源域与目标域特征样本对齐。在开源CWRU数据集与机械故障平台实测数据集上分别进行抗噪实验和迁移实验。抗噪实验表明:① 在无噪声环境下,MSCNN−BiLSTM网络的识别准确率均达到99%以上,说明其具有较好的特征提取能力;② MSCNN−BiLSTM,LeNet−5,MSCNN和BiLSTM四种网络的识别准确率随着噪声强度的增强而降低;③ 在3,5,10 dB噪声环境下,MSCNN−BiLSTM网络的平均识别准确率比LeNet−5,MSCNN和BiLSTM 网络的平均识别准确率均高,说明MSCNN−BiLSTM网络具有较好的抗噪声干扰性能;④ MSCNN−BiLSTM网络在无噪声环境和3 dB噪声环境下,均最先达到收敛且波动较小。迁移实验表明:① 在无标签目标域数据集上,DA+AJD方法的平均识别准确率为97.36%,均高于Baseline,迁移成分分析(TCA),域对抗神经网络(DANN)的识别准确率;② 在测试集混淆矩阵上,DA+AJD方法仅有1个样本被错误识别,表明基于域适应的DA+AJD方法具备更好的故障迁移诊断性能;③ 利用t−SNE算法对处理后的源域与目标域特征样本进行可视化,DA+AJD方法只有少量目标域的滚动体故障和外圈故障特征样本被错误对齐到源域的内圈故障特征样本区域,说明DA+AJD方法可有效减少源域与目标域的边缘分布和条件分布差异,进而达到更好的特征样本对齐效果。Abstract: In order to solve the problem that the data distribution of the source domain and the target domain of rolling bearing is different in the variable working condition environment and the samples of the target domain do not contain labels, a fault diagnosis model of the rolling bearing based on the deep adaptive transfer learning network (DATLN) is proposed. Firstly, a domain-shared characteristic extraction network is built, and multiscale convolutional neural network (MSCNN) is used to suppress noise interference, so as to effectively extract local fault information contained in vibration signals. Secondly, combined with a bi-directional long short-term memory network (BiLSTM), the temporal characteristics in the local fault information are further learned. Finally, transfer learning is introduced to build a domain adaptive module with domain adversarial (DA) training combined with adaptive joint distribution (AJD) metrics. By maximizing the domain classification loss and minimizing the AJD distance, the source and target domain characteristic samples are aligned. The anti-noise experiment and transfer experiment are carried out on the open source CWRU data set and the measured data set of the mechanical fault platform respectively. The anti-noise experiments show the following points. ① The identification accuracy of MSCNN-BiLSTM network is above 99% in the noise-free environment, which shows that MSCNN-BiLSTM network has a good characteristic extraction capability. ② The identification accuracy of MSCNN-BiLSTM, LeNet-5, MSCNN and BiLSTM decreases with the increase of noise intensity. ③ Under the noise environment of 3, 5 and 10 dB, the average identification accuracy of MSCNN-BiLSTM network is higher than that of LeNet-5, MSCNN and BiLSTM networks, indicating that MSCNN-BiLSTM network has better anti-noise interference performance. ④ The MSCNN-BiLSTM network converges first with less fluctuation in both the noise-free environment and the 3 dB noise environment. The transfer experiments show the following points. ① The average identification accuracy of DA+AJD method is 97.36% on unlabeled target domain dataset, which is higher than that of Baseline, transfer component analysis(TCA) and domain adversarial neural network (DANN). ② On the test set confusion matrix, only one sample of the DA+AJD method is incorrectly identified, indicating that the DA+AJD method based on domain adaptation has better fault transfer diagnosis performance. ③ The t-SNE algorithm is used to visualize the processed source and target domain characteristic samples. The DA+AJD method only has a small number of rolling element fault and outer ring fault characteristic samples in the target domain that are incorrectly aligned to the inner ring fault characteristic samples area in the source domain. This result indicates that the DA+AJD method can effectively reduce the edge distribution and conditional distribution differences between the source domain and the target domain, and thus achieves better characteristic sample alignment.
-
表 1 MSCNN−BiLSTM网络参数
Table 1. Parameters of MSCNN-BiLSTM network
网络 层类型 核尺寸/步长 核数量 激活
函数输入尺寸 输出尺寸 MSCNN网络通道1 卷积层1 15/1 16 ReLU (1,1 024) (16,1 010) 卷积层2 15/1 32 ReLU (16,1 010) (32,996) 最大池化层 2/2 — — (32,996) (32,498) 卷积层3 15/1 64 ReLU (32,498) (64,484) 卷积层4 15/1 128 ReLU (64,484) (128,470) 自适应最大
池化层— — — (128,470) (128,4) MSCNN网络通道2 卷积层5 5/1 16 ReLU (1,1 024) (16,1 020) 卷积层6 5/1 32 ReLU (16,1 020) (32,1 016) 最大池化层 2/2 — — (32,1 016) (32,508) 卷积层7 5/1 64 ReLU (32,508) (64,504) 卷积层8 5/1 128 ReLU (64,504) (128,500) 自适应最大
池化层— — — (128,500) (128,4) MSCNN网络
汇聚层汇聚层 — — — (128,4),(128,4) (128,4) BiLSTM网络 BiLSTM层 — — ReLU (128,4) (256) 表 2 域分类器参数
Table 2. Parameters of domain classifier
层次 神经元个数 全连接层1 256 全连接层2 128 全连接层3 2 表 3 0负载下数据集
Table 3. Date set under 0 load
损伤直径/mm 损伤位置 标记 − 正常 N 0.177 8 内圈 IR07 0.355 6 内圈 IR14 0.533 4 内圈 IR21 0.177 8 外圈 OR07 0.355 6 外圈 OR14 0.533 4 外圈 OR21 0.177 8 滚动体 B07 0.355 6 滚动体 B14 0.533 4 滚动体 B21 表 4 CWRU样本集
Table 4. CWRU sample set
状态 标签 样本数 0 0.75 kW 1.5 kW 2.25 kW N 0 100 100 100 100 IR07 1 100 100 100 100 B07 2 100 100 100 100 OR07 3 100 100 100 100 IR14 4 100 100 100 100 B14 5 100 100 100 100 OR14 6 100 100 100 100 IR21 7 100 100 100 100 B21 8 100 100 100 100 OR21 9 100 100 100 100 表 5 不同网络的平均识别准确率
Table 5. Average accuracy of different network
网络 平均识别准确率/% 3 dB 5 dB 10 dB LeNet−5 90.74 93.83 95.42 MSCNN 95.57 96.89 97.14 BiLSTM 89.10 92.58 96.99 MSCNN−BiLSTM 98.43 99.00 99.16 表 6 每种方法的平均识别准确率
Table 6. Average results of different methods
方法 平均识别准确率/% Baseline 75.90 TCA 85.38 DANN 87.19 DA+AJD 97.36 -
[1] 宫涛,杨建华,单振,等. 强噪声背景与变转速工况条件下滚动轴承故障诊断研究[J]. 工矿自动化,2021,47(7):63-71.GONG Tao,YANG Jianhua,SHAN Zhen,et al. Research on rolling bearing fault diagnosis under strong noise background and variable speed working condition[J]. Industry and Mine Automation,2021,47(7):63-71. [2] 鞠晨,张超,樊红卫,等. 基于小波包分解和PSO-BPNN的滚动轴承故障诊断[J]. 工矿自动化,2020,46(8):70-74.JU Chen,ZHANG Chao,FAN Hongwei,et al. Rolling bearing fault diagnosis based on wavelet packet decomposition and PSO-BPNN[J]. Industry and Mine Automation,2020,46(8):70-74. [3] LI Xiang,ZHANG Wei,DING Qian,et al. Multi-layer domain adaptation method for rolling bearing fault diagnosis[J]. Signal Processing,2019,157:180-197. doi: 10.1016/j.sigpro.2018.12.005 [4] WANG Yujing, WANG Chao, KANG Shouqiang, et al. The network combined broad learning with transfer learning: a new intelligent fault diagnosis method for rolling bearings[J]. Measurement Science and Technology, 2020, 31(11). DOI: 10.1088/1361-6501/ab8fee. [5] CHEN Zhuyun,GRYLLIAS K,LI Weihua. Intelligent fault diagnosis for rotary machinery using transferable convolutional neural network[J]. IEEE Transactions on Industrial Informatics,2019,16(1):339-349. [6] 陈超,沈飞,严如强. 改进LSSVM迁移学习方法的轴承故障诊断[J]. 仪器仪表学报,2017,38(1):33-40. doi: 10.3969/j.issn.0254-3087.2017.01.005CHEN Chao,SHEN Fei,YAN Ruqiang. Enhanced least squares support vector machine-based transfer learning strategy for bearing fault diagnosis[J]. Chinese Journal of Scientific Instrument,2017,38(1):33-40. doi: 10.3969/j.issn.0254-3087.2017.01.005 [7] 陈仁祥,陈思杨,杨黎霞,等. 改进TrAdaBoost多分类算法的滚动轴承故障诊断[J]. 振动与冲击,2019,38(15):36-41,48.CHEN Renxiang,CHEN Siyang,YANG Lixia,et al. Fault diagnosis of rolling bearings based on improved TrAdaBoost multi-classification algorithm[J]. Journal of Vibration and Shock,2019,38(15):36-41,48. [8] 康守强,邹佳悦,王玉静,等. 基于无监督特征对齐的变负载下滚动轴承故障诊断方法[J]. 中国电动机工程学报,2020,40(1):274-281,393.KANG Shouqiang,ZOU Jiayue,WANG Yujing,et al. Fault diagnosis method of a rolling bearing under varying loads based on unsupervised feature alignment[J]. Proceedings of the CSEE,2020,40(1):274-281,393. [9] GUO Liang,LEI Yaguo,XING Saibo,et al. Deep convolutional transfer learning network:a new method for intelligent fault diagnosis of machines with unlabeled data[J]. IEEE Transactions on Industrial Electronics,2018,66(9):7316-7325. [10] AN Zenghui,LI Sunming,WANG Jinrui,et al. Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method[J]. Neurocomputing,2019,352(8):42-53. [11] HAN Te,LIU Chao,YANG Wenguang,et al. A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults[J]. Knowledge-Based Systems,2019,165(2):474-487. [12] CHENG Cheng,ZHOU Beitong,MA Guijun,et al. Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data[J]. Neurocomputing,2020,409:35-45. doi: 10.1016/j.neucom.2020.05.040 [13] 吴静然,刘建华,崔冉. 子域适应无监督轴承故障诊断[J]. 振动与冲击,2021,40(15):34-40.WU Jingran,LIU Jianhua,CUI Ran. Sub-domain adaptive unsupervised bearing fault diagnosis[J]. Journal of Vibration and Shock,2021,40(15):34-40. [14] 许子非,金江涛,李春. 基于多尺度卷积神经网络的滚动轴承故障诊断方法[J]. 振动与冲击,2021,40(18):212-220.XU Zifei,JIN Jiangtao,LI Chun. New method for the fault diagnosis of rolling bearings based on a multiscale convolutional neural network[J]. Journal of Vibration and Shock,2021,40(18):212-220. [15] CHEN Xiaohan,ZHANG Beike,GAO Dong. Bearing fault diagnosis base on multi-scale CNN and LSTM model[J]. Journal of Intelligent Manufacturing,2021,32(4):971-987. doi: 10.1007/s10845-020-01600-2 [16] XIE Junyao, ZHANG Laibin, DUAN Lixiang, et al. On cross-domain feature fusion in gearbox fault diagnosis under various operating conditions based on transfer component analysis[C]//2016 IEEE International Conference on Prognostics and Health Management (ICPHM), Ottawa, 2016: 20-22. [17] HAN Te,LIU Chao,YANG Wenguang,et al. Deep transfer network with joint distribution adaptation:a new intelligent fault diagnosis framework for industry application[J]. ISA Transactions,2020,97(2):269-281.