Study on the weakening of coal wall with section resistance adjustment of fully mechanized support in hard thick coal seam with large mining height
-
摘要: 不同回采阶段作用于煤壁−支架上的载荷变化较大,煤壁低效截割是支架阻力与回采阶段不匹配、矿山压力不能有效破煤的结果。支架分段调阻技术在满足不同回采阶段(周期来压前、正常回采、周期来压后)顶板安全控制的要求下,调整支架工作阻力改变煤壁上的载荷用于压裂破煤,能有效解决厚硬煤壁弱化的难题。以杨伙盘煤矿1102综采工作面为工程背景,研究了与回采阶段匹配的厚硬煤层支架分段调阻技术。模拟分析结果表明:① 在工作面正常回采阶段和来压阶段,煤壁测线上各点支承压力峰值、影响范围随液压支架初撑力增大而减小;相同支架初撑力作用下,来压阶段煤壁上支承压力峰值和影响范围均大于正常回采阶段。② 当液压支架初撑力由2 000 kN增至8 000 kN时,煤壁水平位移值在来压阶段减小了17 mm,在正常回采阶段减小了7.5 mm,说明降低支架初撑力有利于坚硬煤壁弱化。③ 不同回采阶段,围岩塑性区的破坏程度随液压支架初撑力的增加而降低,说明煤壁破坏程度减小。④ 正常回采阶段支架阻力为6 000~8 000 kN、周期来压后支架阻力为4 000~6 000 kN、周期来压前支架阻力大于8 000 kN,可以保证顶板安全和厚硬煤壁高效截割。现场应用表明:① 液压支架在115个工作循环中增阻状态占统计循环数的64.8%(1次增阻型占75.50%,2次增阻为20.16%,多次增阻为4.34%);支架活柱伸缩量在0~3%的比率为90%,说明现场生产中液压支架运转和控顶能力良好。② 分段调整液压支架工作支护阻力后,在有效控顶前提下,采煤机平均割煤时间降低至1.8 h,降低了21.7%,有效实现煤壁弱化,提高了割煤效率。Abstract: The load acting on coal wall-support in different mining stages varies greatly. The low efficiency cutting of coal wall is the result of the mismatch between the support resistance and mining stage, and the incapability of the mine pressure to effectively break the coal. The support section resistance adjustment technology can meet the requirements of roof safety control in different mining stages (before periodic pressure, normal mining, after periodic pressure), adjust the support working resistance to change the load on the coal wall for fracturing and breaking coal, which can effectively solve the problem of thick and hard coal wall weakening. Based on the engineering background of 1102 fully mechanized working face in Yanghuopan Coal Mine, the technology of support section resistance adjustment in thick hard coal seam matching with mining stage is studied. The simulation results show the following points. ① The peak value and influence range of support pressure at each point of coal wall survey line decrease with the increase of initial support of hydraulic support in normal mining stage and pressure stage of working face. Under the same initial support, the peak value and the influence range of the support pressure on the coal wall in the pressure stage are larger than those in the normal mining stage. ② When the initial support of hydraulic support increases from 2000 kN to 8000 kN, the horizontal displacement of coal wall decreases by 17 mm in the pressure stage and 7.5 mm in the normal mining stage, indicating that reducing the initial support is conducive to weakening the hard coal wall. ③ In different mining stages, the damage degree of plastic zone of surrounding rock decreases with the increase of initial support of hydraulic support, indicating that the damage degree of coal wall decreases. ④ The support resistance is 6000-8000 kN in normal mining stage, 4000-6000 kN after periodic pressure, and more than 8 000 kN before periodic pressure, which can ensure the safety of roof and efficient cutting of thick and hard coal wall. The field application shows the following points. ① In 115 working cycles, the increased resistance state of the hydraulic support accounts for 64.8% of the statistical cycles (75.50% for the first resistance increasing type, 20.16% for the second resistance increasing type and 4.34% for the multiple resistance increasing type). The ratio of the expansion and contraction of the support movable column between 0-3% is 90%, indicating that the hydraulic support has a good capability to operate and control the roof in the field production. ② After adjusting the support resistance of the hydraulic support in sections, the average coal cutting time of the shearer is reduced to 1.8 h under the premise of effective roof control, which is reduced by 21.7% . The coal wall is weakened effectively, and the coal cutting efficiency is improved.
-
表 1 1102综采工作面采煤机开机率实测结果统计
Table 1. Statistics of the actual measurement results of the shearer operating rate in the 1102 fully mechanized working face
序号 割煤速度/
(m·min−1)开机率/% 影响因素 操作
人数1 1.5 30 采煤机故障 2 2 1.8 45 采煤机故障,端头进刀停机 2 3 1.1 24 刮板输送机的开停影响;刮板输
送机上大块煤太多,采煤机不能移动3 4 1.6 43 端头进刀工序复杂,早班采煤机
维修时间较长3 5 1.9 48 — 2 6 1.7 45 — 2 7 1.2 25 采煤机过载 2 表 2 岩块力学参数
Table 2. Mechanical parameters of rock blocks
岩性 密度/
(kg·m−3)剪切模量/
MPa体积模量/
MPa黏聚力/
MPa内摩擦角/
(°)粉砂岩 2 475 2 300 5 800 1.60 35 泥岩 1 820 — 2 650 1.20 26 砂质泥岩 2 290 2 100 2 600 1.00 28 2号煤层 1 400 1 960 2 000 0.80 45 中砂岩 2 290 2 200 2 600 1.30 28 表 4 工作面液压支架支护强度与采煤机割煤时间
Table 4. Support strength of hydraulic support in working face and coal cutting time of shearer
序号 推进
距离/m支架平均
支护阻力/kN采煤机
割煤时间/h1 2.2 6 302.16 1.6 2 5.4 7 184.09 1.7 3 7.0 7 802.72 1.8 4 10.1 8 253.89 2.0 5 12.7 8 685.05 2.1 6 14.6 9 213.41 1.7 -
[1] 王金华. 特厚硬煤层综采技术应用现状及发展趋势[J]. 煤炭科学技术,2014,42(1):1-4.WANG Jinhua. Present status and development tendency of fully-mechanized coal mining technology in ultra thick hard seam[J]. Coal Science and Technology,2014,42(1):1-4. [2] 宋高峰,王振伟,钟晓勇. 坚硬顶板破断冲击机理及支架与围岩“收敛−约束”耦合机制研究[J]. 采矿与安全工程学报,2020,37(5):951-959.SONG Gaofeng,WANG Zhenwei,ZHONG Xiaoyong. Dynamic impact mechanism of hard roof strata and coupling mechanism of " constrain-convergence" between support and surrounding rock[J]. Journal of Mining & Safety Engineering,2020,37(5):951-959. [3] 黄庆享,徐璟,杜君武. 浅埋煤层大采高工作面支架合理初撑力确定[J]. 采矿与安全工程学报,2019,36(3):491-496.HUANG Qingxiang,XU Jing,DU Junwu. Determination of support setting load of large-mining-height long wall face in shallow coal seam[J]. Journal of Mining & Safety Engineering,2019,36(3):491-496. [4] 徐刚,张春会,张振金. 综放工作面顶板缓慢活动支架增阻预测模型[J]. 煤炭学报,2020,45(11):3678-3687.XU Gang,ZHANG Chunhui,ZHANG Zhenjin. Prediction model for increasing resistance of hydraulic support due to slow motion of the roof in mechanized mining working face[J]. Journal of China Coal Society,2020,45(11):3678-3687. [5] 李海涛. 煤体强度对煤壁稳定性的影响研究[J]. 煤炭工程,2020,52(8):118-122.LI Haitao. Effect of coal strenth on coal wall stability[J]. Coal Engineering,2020,52(8):118-122. [6] 张金虎,李明忠,杨正凯,等. 超大采高综采工作面煤壁片帮机理及多维防护措施研究[J]. 采矿与安全工程学报,2021,38(3):487-495.ZHANG Jinhu,LI Mingzhong,YANG Zhengkai,et al. Mechanism of coal wall spalling in super high fully mechanized face and its multi-dimensional protection measures[J]. Journal of Mining & Safety Engineering,2021,38(3):487-495. [7] 王家臣,王兆会,孔德中. 硬煤工作面煤壁破坏与防治机理[J]. 煤炭学报,2015,40(10):2243-2250.WANG Jiachen,WANG Zhaohui,KONG Dezhong. Failure and prevention mechanism of coal wall in hard coal seam[J]. Journal of China Coal Society,2015,40(10):2243-2250. [8] 曹志强. 近距离煤层综采工作面大工作阻力支架适应性分析[J]. 煤炭工程, 2019, 51(增刊2): 100-102.CAO Zhiqiang. Adaptability analysis of large working resistance support in fully mechanized mining face of close coal seams[J]. Coal Engineering, 51(S2): 100-102. [9] 刘强,苏学贵,郝佩,等. 基于大采高综采支架工况的煤壁片帮控制研究[J]. 矿业研究与开发,2018,38(11):61-65.LIU Qiang,SU Xuegui,HAO Pei,et al. Study on the control of rib fall of coal wall based on the working state of large mining hydraulic support[J]. Mining Research and Development,2018,38(11):61-65. [10] 刘闯,李化敏,张群磊. 大采高液压支架初撑力与额定工作阻力合理比值研究[J]. 采矿与安全工程学报,2018,35(4):725-733.LIU Chuang,LI Huamin,ZHANG Qunlei. Research on reasonable ratio of setting load and yield load of shield in large mining height coal mine[J]. Journal of Mining & Safety Engineering,2018,35(4):725-733. [11] 许海涛. 综采工作面支架阻力分布特征及适应性研究[J]. 山西能源学院学报,2017,30(4):12-13. doi: 10.3969/j.issn.1008-8881.2017.04.006XU Haitao. Research on resistance distribution characteristics and adaptability of support in fully mechanized mining face[J]. Journal of Shanxi Institute of Energy,2017,30(4):12-13. doi: 10.3969/j.issn.1008-8881.2017.04.006 [12] 方新秋,何杰,李海潮. 软煤综放面煤壁片帮机理及防治研究[J]. 中国矿业大学学报,2009,38(5):640-644. doi: 10.3321/j.issn:1000-1964.2009.05.007FANG Xinqiu,HE Jie,LI Haichao. A study of the rib fall mechanism in soft coal and its control at a fully-mechanized top-coal caving face[J]. Journal of China University of Mining & Technology,2009,38(5):640-644. doi: 10.3321/j.issn:1000-1964.2009.05.007 [13] 王兆会,王家臣,杨毅,等. 综采工作面煤壁稳定性的支架刚度效应分析[J]. 中国矿业大学学报,2019,48(2):258-267.WANG Zhaohui,WANG Jiachen,YANG Yi,et al. Mechanical relation between support stiffness and longwall face stability within fully-mechanized mining faces[J]. Journal of China University of Mining & Technology,2019,48(2):258-267. [14] 任艳芳. 综采工作面液压支架支护能力的分析与评价方法[J]. 采矿与岩层控制工程学报,2020,2(3):83-89.REN Yanfang. Analysis and evaluation method for supporting ability of supports in coal mine working face[J]. Journal of Mining and Strata Control Engineering,2020,2(3):83-89.