Communication system of hydraulic support electro-hydraulic controller with fault diagnosis function
-
摘要: 综采工作面通信节点数量多、通信距离长、电磁环境复杂。针对现有液压支架电液控制器通信系统普遍缺乏故障诊断功能的问题,以ZDYZ−JK型液压支架电液控制器为研究对象,设计了一套具有故障诊断和故障定位功能的液压支架电液控制器通信系统。该系统具有双路通信网络,其中一路采用总线结构同时连接主控制器和所有间架控制器,另一路则采用串联结构,仅连接相邻2台间架控制器。主控制器与间架控制器间的通信采用总线方式,手动模式下的间架控制器间邻架通信及控制则采用串联方式,二者互不干扰。间架控制器在接收到主控制器的通信信号后,会实时进行故障诊断并记录故障情况,同时会周期性向相邻支架上的间架控制器发送诊断信息,使得存在总线通信故障的间架控制器的诊断结果能够通过相邻支架上的间架控制器反馈给主控制器,从而可以在间架控制器发送报文功能故障或出错时及时对错误进行上报,上报内容包含控制器编号信息,以实现故障定位。试验结果表明:① 系统在121个通信节点、最大通信距离约为1 040 m时工作良好,且节点数量可继续增加,最高可达255个,该指标满足200个节点、1 000 m通信距离的设计要求。② 可对由于工作面电磁干扰、电液控制器物理损坏、电液控制器软件错误等原因造成的多种通信故障进行诊断和精确定位。Abstract: There are many communication nodes, long communication distance and complex electromagnetic environment in fully mechanized working face. The existing communication system of hydraulic support electro-hydraulic controller generally lacks fault diagnosis function. In order to solve this problem, a set of communication system of hydraulic support electro-hydraulic controller with fault diagnosis and fault location function is designed by taking the ZDYZ−JK type hydraulic support electro-hydraulic controller as the research object. The system has a two-way communication network. One way adopts a bus structure to connect the main controller and all the support controllers at the same time. The other way adopts a serial structure to only connect two adjacent support controllers. The communication between the main controller and the support controller adopts a bus mode. And the communication and control between adjacent support of the support controllers under the manual mode adopts a serial mode. Therefore, the two modes do not interfere with each other. After receiving the communication signal of the main controller, the support controllers can perform fault diagnosis and record fault conditions in real time. At the same time, the support controllers can periodically send diagnosis information to the support controllers on adjacent supports. Therefore, the diagnosis result of the support controller with bus communication fault can be fed back to the main controller through the support controllers on the adjacent supports. Therefore, when the function of sending a message by the support controller fails or an error occurs, the error can be reported in time. And the report content includes the controller number information to realize the fault location. The experiment results show the following two points. ① The system works well with 121 communication nodes and the maximum communication distance of 1 040 m. And the number of nodes can be increased to 255, which meets the design requirements of 200 nodes and 1 000 m communication distance. ② The system can diagnose and accurately locate various communication faults caused by electromagnetic interference of working face, physical damage of electro-hydraulic controller, software error of electro-hydraulic controller and so on.
-
表 1 主控制器发送命令报文有效内容
Table 1. Command sent message effective content of main controller
功能 支架号 命令功能码 数据 参数修改 被控支架号 7EH 数据量+数据 参数上报 被控支架号 03H — 远程控制 被控支架号 55H 动作功能码 表 2 间架控制器应答报文有效内容
Table 2. Response message effective content of support controller
功能 支架号 命令功能码 数据 诊断寄存器内容 参数修改 本架和邻架
均发送本架
支架号7EH — 本架发送自诊断
寄存器,邻架发
送协处理寄存器参数上报 03H 数据量+数据 远程控制 55H 动作功能码 表 3 寄存器置位规则
Table 3. Register setting rules
执行情况 自诊断寄存器 协处理寄存器 未接收到通信 初始值00H 初始值00H 接收到通信 — 01H 不能识别命令内容 01H — 成功识别命令内容 02H — 执行命令完毕 03H — 应答内容发送完毕 00H 00H 表 4 故障判断规则
Table 4. Fault judgment rules
自诊断寄存器−
协处理寄存器内容故障诊断结果 未收到−未收到 接收命令故障 未收到−01H 通信应答故障 01H−01H 命令内容错误 02H−01H 命令执行失败 03H−01H 命令执行成功 03H−未收到 其他通信故障 表 5 故障详情
Table 5. Fault details
故障编号 设置内容 故障类型 ① 通过修改10号间架控制器软件,使其不对
报文进行完整接收典型干扰故障 ② 通过修改软件,使主控制器下发错误命令
功能码③ 通过修改20号间架控制器软件,跳过命令
执行阶段,使命令不能被正确执行典型软件故障 ④ 通过修改30号间架控制器软件,跳过应答
阶段,使间架控制器不能正确应答⑤ 通过修改主控制器软件使其不进行实际
的报文发送(但主控制器认为发送了报文,
并会等待应答)⑥ 通过断开40号间架控制器TXD引脚使其
不能发送报文典型硬件故障 ⑦ 通过断开50号间架控制器RXD引脚使其
不能接收报文表 6 故障诊断试验结果
Table 6. Fault diagnosis test results
故障编号 故障定位结果 故障诊断结果 ① 10号 接收故障 ② 1−120号 下发命令有误 ③ 20号 参数修改失败 ④ 30号 应答故障 ⑤ 1−120号 接收故障 ⑥ 40号 离线 ⑦ 50号 离线 -
[1] 王国法,徐亚军,孟祥军,等. 智能化采煤工作面分类、分级评价指标体系[J]. 煤炭学报,2020,45(9):3033-3044.WANG Guofa,XU Yajun,MENG Xiangjun,et a1. Specification,classification and grading evaluation index for smart longwall mining face[J]. Journal of China Coal Society,2020,45(9):3033-3044. [2] 王国法,范京道,徐亚军,等. 煤炭智能化开采关键技术创新进展与展望[J]. 工矿自动化,2018,44(2):5-12.WANG Guofa,FAN Jingdao,XU Yajun,et al. Innovation progress and prospect on key technologies of intelligent coal mining[J]. Industry and Mine Automation,2018,44(2):5-12. [3] 孙继平. 煤矿智能化与矿用5G和网络硬切片技术[J]. 工矿自动化,2021,47(8):1-6.SUN Jiping. Coal mine intelligence,mine 5G and network hard slicing technology[J]. Industry and Mine Automation,2021,47(8):1-6. [4] 王书明. 液压支架电液控制系统透明通信网络系统设计[J]. 工矿自动化,2017,43(12):6-10.WANG Shuming. Design of transparent communication network system of electro-hydraulic control system of hydraulic support[J]. Industry and Mine Automation,2017,43(12):6-10. [5] 张雪梅. 基于大数据的液压支架电液控制系统故障诊断[J]. 工矿自动化,2018,44(12):34-38.ZHANG Xuemei. Fault diagnosis for electro-hydraulic control system of hydraulic support based on big data[J]. Industry and Mine Automation,2018,44(12):34-38. [6] 王书明,牛剑峰. 液压支架电液控制系统故障诊断技术研究[J]. 煤炭科学技术,2018,46(2):225-231.WANG Shuming,NIU Jianfeng. Study on fault diagnosis technology of electro-hydraulic control system applied in hydraulic powered support[J]. Coal Science and Technology,2018,46(2):225-231. [7] 白永胜,牛剑峰. 液压支架电液控制通信网络系统透明化设计[J]. 煤炭科学技术,2018,46(9):183-187.BAl Yongsheng,NIU Jianfeng. Design of transparency of communication network system for electronic-hydraulic control system of hydraulic support[J]. Coal Science and Technology,2018,46(9):183-187. [8] 张润冬. 自动化工作面液压支架高端端头控制器的开发[D]. 太原: 太原理工大学, 2018.ZHANG Rundong. Development of high end controller of hydraulic support in automatic working face [D]. Taiyuan: Taiyuan University of Technology, 2018. [9] 宋单阳,宋建成,田慕琴,等. 煤矿综采工作面液压支架电液控制技术的发展及应用[J]. 太原理工大学学报,2018,49(2):240-251.SONG Danyang,SONG Jiancheng,TIAN Muqin,et al. Development and application of electro-hydraulic control technology for hydraulic support of fully mechanized coal mining face in coal mine[J]. Journal of Taiyuan University of Technology,2018,49(2):240-251. [10] 汪佳彪,王忠宾,张霖,等. 基于以太网和CAN总线的液压支架电液控制系统研究[J]. 煤炭学报,2016,41(6):1575-1581.WANG Jiabiao,WANG Zhongbin,ZHANG Lin,et al. Research on electro-hydraulic control system of hydraulic support based on Ethernet and CAN bus[J]. Journal of China Coal Society,2016,41(6):1575-1581. [11] 李磊,宋建成,田慕琴,等. 基于DSP和RS485总线的液压支架电液控制通信系统的设计[J]. 煤炭学报,2010,35(4):701-704.LI Lei,SONG Jiancheng,TIAN Muqin,et al. Design of hydraulic support electro-hydraulic control communication system based on DSP and RS485 bus[J]. Journal of China Coal Society,2010,35(4):701-704. [12] 杜春晖. 综采工作面视频监控系统优化设计[J]. 工矿自动化,2020,46(8):94-100.DU Chunhui. Optimization design of video monitoring system on fully-mechanized mining face[J]. Industry and Mine Automation,2020,46(8):94-100. [13] 高晋,田慕琴,许春雨,等. 基于双CAN总线的薄煤层液压支架电液控制系统研究[J]. 煤炭工程,2020,52(1):158-162.GAO Jin,TIAN Muqin,XU Chunyu,et al. Research on electro-hydraulic control system of thin coal seam hydraulic support based on dual CAN bus[J]. Coal Engineering,2020,52(1):158-162. [14] 赵康康. 基于冗余CAN通信的智能集成供液控制系统[J]. 仪表技术与传感器,2020(5):62-65,71. doi: 10.3969/j.issn.1002-1841.2020.05.014ZHAO Kangkang. Intelligent integrated liquid supply control system based on redundancy CAN bus[J]. Instrument Technology and Sensor,2020(5):62-65,71. doi: 10.3969/j.issn.1002-1841.2020.05.014 [15] 张文杰. 液压支架电液控制系统间架控制器网络控制系统的研究[D]. 太原: 太原理工大学, 2012.ZHANG Wenjie. Research on network control system of rack controller in electro-hydraulic control system of hydraulic support [D]. Taiyuan: Taiyuan University of Technology, 2012. [16] 赵龙. 基于16位单片机液压支架端头控制器的开发[D]. 太原: 太原理工大学, 2015.ZHAO Long. Development of hydraulic support end controller based on 16 bit single chip microcomputer [D]. Taiyuan: Taiyuan University of Technology, 2015. [17] ZHANG Xinfu,HUANG Haibo,LI Jiangjiang,et al. Communication networking technology based on CAN-bus[J]. Field Bus and Networks,2015,34(10):84-90.