留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿用钢丝绳损伤检测磁通回路优化设计

田劼 田壮 郭红飞 刘凝哲 马建武

田劼,田壮,郭红飞,等. 矿用钢丝绳损伤检测磁通回路优化设计[J]. 工矿自动化,2022,48(3):118-122.  doi: 10.13272/j.issn.1671-251x.2021120013
引用本文: 田劼,田壮,郭红飞,等. 矿用钢丝绳损伤检测磁通回路优化设计[J]. 工矿自动化,2022,48(3):118-122.  doi: 10.13272/j.issn.1671-251x.2021120013
TIAN Jie, TIAN Zhuang, GUO Hongfei, et al. Optimization design of magnetic flux circuit for mine wire rope damage detection[J]. Journal of Mine Automation,2022,48(3):118-122.  doi: 10.13272/j.issn.1671-251x.2021120013
Citation: TIAN Jie, TIAN Zhuang, GUO Hongfei, et al. Optimization design of magnetic flux circuit for mine wire rope damage detection[J]. Journal of Mine Automation,2022,48(3):118-122.  doi: 10.13272/j.issn.1671-251x.2021120013

矿用钢丝绳损伤检测磁通回路优化设计

doi: 10.13272/j.issn.1671-251x.2021120013
基金项目: 国家自然科学基金资助项目(51774293)。
详细信息
    作者简介:

    田劼 (1982-),女,山西太原人,副教授,博士,主要研究方向为钢丝绳无损检测,E-mail:tianj@cumtb.edu.cn

  • 中图分类号: TD532

Optimization design of magnetic flux circuit for mine wire rope damage detection

  • 摘要: 漏磁通检测法是应用最广泛的矿用钢丝绳损伤检测方法,目前未有考虑磁通回路中磁噪声信号对钢丝绳损伤漏磁通检测信号影响的研究。基于钢丝绳损伤漏磁通检测原理,构建了漏磁通检测等效磁路模型,采用Ansoft Maxwell有限元软件对磁通回路的磁场分布进行仿真,结果表明除主磁通和钢丝绳损伤漏磁通外,磁通回路中还存在多处磁噪声回路,易对钢丝绳损伤漏磁通检测信号造成干扰,其中衔铁导磁路径的漏磁通和两侧永磁体与空气介质之间耦合漏磁通的影响最大。基于仿真分析结果,对磁通回路进行了优化设计:将衔铁与永磁铁接触部位由直角结构改为圆角结构,以减小该部位的漏磁通,增大衔铁导磁路径中的主磁通,进而增强钢丝绳损伤漏磁通检测信号;采用高导磁材料设计环形磁桥路屏蔽装置并安装在损伤漏磁通检测区域,引导两侧永磁体与空气介质之间耦合漏磁通的走向,减小耦合漏磁通对钢丝绳损伤漏磁通检测的影响。实验结果表明,磁通回路经优化后,钢丝绳损伤检测信号特征较优化前更加明显,采集信号由6.14 mV增大至18.59 mV,验证了优化方案可提高磁通回路传递效率,对损伤漏磁通有聚合增强效果,减小了永磁体与空气介质之间耦合漏磁通与钢丝绳损伤漏磁通的叠加效应,有利于提高钢丝绳损伤检测准确性。

     

  • 图  1  钢丝绳损伤漏磁通检测基本模型

    Figure  1.  Basic model of wire rope damage detection by magnetic flux leakage

    图  2  漏磁通检测等效磁路模型

    Figure  2.  Equivalent magnetic circuit model of magnetic flux leakage detection

    图  3  磁通回路的磁场分布

    Figure  3.  Magnetic field distribution of magnetic flux circuit

    图  4  衔铁导磁路径优化仿真模型

    Figure  4.  Simulation model of optimized armature magnetic path

    图  5  衔铁与永磁体接触部位轴向漏磁通分布

    Figure  5.  Radial magnetic flux leakage distribution at touching part of armature and permanent magnet

    图  6  磁桥路屏蔽装置及其安装

    Figure  6.  Magnetic bridge shielding equipment and its setting mode

    图  7  钢丝绳损伤检测磁密度云图

    Figure  7.  Magnetic density cloud map of wire rope damage detection

    图  8  钢丝绳损伤检测漏磁通分布

    Figure  8.  Magnetic flux leakage distribution of wire rope damage detection

    图  9  钢丝绳损伤检测实验平台

    Figure  9.  Experimental platform of wire rope damage detection

    图  10  钢丝绳损伤检测结果

    Figure  10.  Wire rope damage detection results

  • [1] 牟帅,陈志平,金嘉蕾,等. 钢丝绳无损检测技术研究进展[J]. 机电工程,2014,31(6):707-710.

    MOU Shuai,CHEN Zhiping,JIN Jialei,et al. Progress on nondestructive testing technology of wire ropes[J]. Journal of Mechanical & Electrical Engineering,2014,31(6):707-710.
    [2] 何吉坤. 矿用钢丝绳在线检测系统的研究与设计[D]. 西安: 西安科技大学, 2015.

    HE Jikun. Research and design of mining wire rope detection system[D]. Xi'an: Xi'an University of Science and Technology, 2015.
    [3] KALWA E,PIEKARSKI K. Fundamental of magnetic testing of steel rope[J]. NDT International,1989,22(1):36-43.
    [4] 张操,朱承建,刘健康. 基于漏磁原理的钢丝绳探伤仪影响因素研究[J]. 工矿自动化,2015,41(5):52-54.

    ZHANG Cao,ZHU Chengjian,LIU Jiankang. Research of impact factors of wire rope flaw detector based on principle of magnetic flux leakage[J]. Industry and Mine Automation,2015,41(5):52-54.
    [5] 康宜华,黎振捷,杨芸,等. 微小型钢丝绳漏磁检测传感器与仪器[J]. 无损检测,2014,36(5):11-15.

    KANG Yihua,LI Zhenjie,YANG Yun,et al. Mini-micro sensor & device for wire rope MFL testing[J]. Nondestructive Testing,2014,36(5):11-15.
    [6] 李登蓬,李国平,武博,等. 钢丝绳金属截面积损失型损伤检测传感器设计及仿真分析[J]. 济南大学学报(自然科学版),2019,33(1):37-41.

    LI Dengpeng,LI Guoping,WU Bo,et al. Design and simulation analysis of loss of metallic cross-sectional area detection sensor for wire ropes[J]. Journal of University of Jinan ( Science and Technology),2019,33(1):37-41.
    [7] 谢菲,孙燕华,姜宵园,等. 矿井提升钢丝绳在线漏磁无损检测装置[J]. 无损探伤,2019,43(1):34-36.

    XIE Fei,SUN Yanhua,JIANG Xiaoyuan,et al. On-line magnetic leakage nondestructive testing device for mine lifting wire rope[J]. Nondestructive Inspection,2019,43(1):34-36.
    [8] 王红尧,田劼. 基于有限元分析的矿用钢丝绳聚磁检测方法[J]. 煤炭学报,2013,38(增刊1):256-260.

    WANG Hongyao,TIAN Jie. Method of magnetic collect detection for coal mine wire rope base on finite element analysis[J]. Journal of China Coal Society,2013,38(S1):256-260.
    [9] 时统军,王朋,王博. 矿井提升机钢丝绳张力监测系统设计[J]. 工矿自动化,2014,40(6):103-105.

    SHI Tongjun,WANG Peng,WANG Bo. Design of wirerope tension monitoring system of mine hoist[J]. Industry and Mine Automation,2014,40(6):103-105.
    [10] 刘利伟,李建朝. 矿井提升机钢丝绳在线无损检测系统的设计及应用[J]. 工矿自动化,2012,38(1):90-92.

    LIU Liwei,LI Jianchao. Design of on-line nondestructive inspection system of steel rope of mine hoist and its application[J]. Industry and Mine Automation,2012,38(1):90-92.
    [11] 陶德馨,艾丽斯佳. 基于弱磁探伤的钢丝绳无损检测技术[J]. 中国工程机械学报,2009,7(1):96-99.

    TAO Dexin,AI Lisijia. Nondestructive testing technology for wire ropes based on weak magnetic flaw detection[J]. Chinese Journal of Construction Machinery,2009,7(1):96-99.
    [12] 陈征宇,叶玉龙. 基于ANSYS的电梯钢丝绳失效检测有限元分析[J]. 机电信息,2018(27):69-70. doi: 10.3969/j.issn.1671-0797.2018.27.037

    CHEN Zhengyu,YE Yulong. Finite element analysis of elevator wire rope failure detection based on ANSYS[J]. Mechanical and Electrical Information,2018(27):69-70. doi: 10.3969/j.issn.1671-0797.2018.27.037
    [13] 田劼,周俊莹,王红尧,等. 钢丝绳探伤多回路励磁检测方法研究[J]. 矿业科学学报,2018,3(2):180-185.

    TIAN Jie,ZHOU Junying,WANG Hongyao,et al. Research on multiloop magnetic detection method for steel wire rope detection[J]. Journal of Mining Science and Technology,2018,3(2):180-185.
    [14] 常用根,江帆,陈潇. 矿井提升装备健康状态监测系统设计[J]. 工矿自动化,2018,44(2):38-42.

    CHANG Yonggen,JIANG Fan,CHEN Xiao. Design of health condition monitoring system of mine hoisting equipment[J]. Industry and Mine Automation,2018,44(2):38-42.
    [15] 江念,王召巴,陈友兴,等. 电磁超声检测钢板厚度实验的参数优化[J]. 传感技术学报,2015,28(4):498-502. doi: 10.3969/j.issn.1004-1699.2015.04.008

    JIANG Nian,WANG Zhaoba,CHEN Youxing,et al. The experiment parameters of the steel-sheet thickness measurement by electromagnetic ultrasonic[J]. Chinese Journal of Sensors and Actuators,2015,28(4):498-502. doi: 10.3969/j.issn.1004-1699.2015.04.008
  • 加载中
图(10)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  108
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-03
  • 修回日期:  2022-03-06
  • 网络出版日期:  2022-03-05

目录

    /

    返回文章
    返回