留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下无人驾驶无轨胶轮车目标3D检测研究

秦沛霖 张传伟 周李兵 王健龙

秦沛霖, 张传伟, 周李兵, 等. 煤矿井下无人驾驶无轨胶轮车目标3D检测研究[J]. 工矿自动化, 2022, 48(2): 35-41. doi: 10.13272/j.issn.1671-251x.2021110068
引用本文: 秦沛霖, 张传伟, 周李兵, 等. 煤矿井下无人驾驶无轨胶轮车目标3D检测研究[J]. 工矿自动化, 2022, 48(2): 35-41. doi: 10.13272/j.issn.1671-251x.2021110068
QIN Peilin, ZHANG Chuanwei, ZHOU Libing, et al. Research on 3D target detection of unmanned trackless rubber-tyred vehicle in coal mine[J]. Industry and Mine Automation, 2022, 48(2): 35-41. doi: 10.13272/j.issn.1671-251x.2021110068
Citation: QIN Peilin, ZHANG Chuanwei, ZHOU Libing, et al. Research on 3D target detection of unmanned trackless rubber-tyred vehicle in coal mine[J]. Industry and Mine Automation, 2022, 48(2): 35-41. doi: 10.13272/j.issn.1671-251x.2021110068

煤矿井下无人驾驶无轨胶轮车目标3D检测研究

doi: 10.13272/j.issn.1671-251x.2021110068
基金项目: 

国家自然科学基金资助项目(51974229)。

详细信息
    作者简介:

    秦沛霖(1995-),男,陕西西安人,博士研究生,研究方向为计算机视觉与井下智能环境感知,E-mail:20105016012@xust.stu.edu。

    通讯作者:

    张传伟(1974-),男,安徽淮南人,教授,博士,研究方向为机电系统智能控制和矿用智能车辆,E-mail:zhangcw@xust.edu.cn。

  • 中图分类号: TD67

Research on 3D target detection of unmanned trackless rubber-tyred vehicle in coal mine

  • 摘要: 基于3D检测的环境感知是实现煤矿井下无轨胶轮车无人驾驶技术的基础。因井下环境中光照不足,导致RGB图像信息缺失,且巷道空间狭小导致激光雷达采集的点云数据存在较多噪声,现有的基于图像或雷达点云的目标3D检测方法在井下难以取得较好的检测效果。针对该问题,提出一种融合图像和雷达点云的无人驾驶无轨胶轮车目标3D检测方法。针对获取的无轨胶轮车行驶环境数据进行预处理:采用全局直方图均衡化方法提升RGB图像亮度,降低井下光照不均影响;对雷达点云数据进行双边滤波去噪及主成分分析降维处理,以提升点云数据质量,减少运算时间。设计了一种融合图像与雷达点云检测模型,采用区域生成网络生成2D图像候选区域,对其与点云数据进行早期特征级融合生成3D候选区域,并与经感兴趣区域池化的图像和点云数据进行后期区域级融合,输出3D检测锚框,实现目标检测。实验结果表明,与基于YOLO3D,MV3D模型的检测方法相比,该方法对待测目标的检测精度较高,较好地实现了精度与检测速度的平衡。井下测试结果表明,该方法能够准确检测出无轨胶轮车行驶环境中的行人或车辆位置,无漏检情况,具有良好的井下适应性。

     

  • [1] 王陈,鲍久圣,袁晓明,等.无轨胶轮车井下无人驾驶系统设计及控制策略研究[J].煤炭学报,2021,46(增刊1):520-528.

    WANG Chen,BAO Jiusheng,YUAN Xiaoming,et al.Design and control strategy of underground driverless system for trackless rubber tire vehicle[J].Journal of China Coal Society,2021,46(S1):520-528.
    [2] ALI W,ABDELKARIM S,ZAHRAN M,et al.YOLO3D:end-to-end real-time 3D oriented object bounding box detection from LiDAR point cloud[C]//Proceedings of the European Conference on Computer Vision,Munich,2018:10-30.
    [3] MOUSAVIAN A,ANGUELOV D,FLYNN J,et al.3D bounding box estimation using deep learning and geometry[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:7074-7082.
    [4] CHABOT F,CHAOUCH M,RABARISOA J,et al.Deep MANTA:a coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Hawaii,2017:2040-2049.
    [5] CHEN Xiaozhi,KUNDU K,ZHU Yukun,et al.3D object proposals using stereo imagery for accurate object class detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(5):1259-1272.
    [6] LI Bo,ZHANG Tianlei,XIA Tian.Vehicle detection from 3D lidar using fully convolutional network[Z/OL].arXiv Preprint,arXiv:1608.07916. https://arxiv.org/abs/1608.07916v1.
    [7] KU J,MOZIFIAN M,LEE J,et al.Joint 3D proposal generation and object detection from view aggregation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems,Madrid,2018:1-8.
    [8] CHEN Xiaozhi,MA Huimin,WAN Ji,et al.Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii,2017:1907-1915.
    [9] QI C R,LIU Wei,WU Chenxia,et al.Frustum PointNets for 3D object detection from RGB-D data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City,2018:918-927.
    [10] 闫凌,黄佳德.矿用卡车无人驾驶系统研究[J].工矿自动化,2021,47(4):19-29.

    YAN Ling,HUANG Jiade.Research on unmanned driving system of mine-used truck[J].Industry and Mine Automation,2021,47(4):19-29.
    [11] 贾祝广,孙效玉,王斌,等.无人驾驶技术研究及展望[J].矿业装备,2014(5):44-47.

    JIA Zhuguang,SUN Xiaoyu,WANG Bin,et al.Research and prospect of unmanned driving technology[J].Mining Equipment,2014(5):44-47.
    [12] 路皓翔,刘振丙,郭棚跃,等.多尺度卷积结合自适应双区间均衡化的图像增强[J].光子学报,2020,49(10):158-172.

    LU Haoxiang,LIU Zhenbing,GUO Pengyue,et al.Multi-scale convolution combined with adaptive Bi-interval equalization for image enhancement[J].Acta Photonica Sinica,2020,49(10):158-172.
    [13] 呼亚萍,孔韦韦,黄翠玲,等.一种基于卷积运算与全变分模型的图像去噪方法[J].电讯技术,2020,60(10):1194-1199.

    HU Yaping,KONG Weiwei,HUANG Cuiling,et al.An image denoising method based on convolution operation and full variational model[J].Telecommunication Engineering,2020,60(10):1194-1199.
    [14] REN Shaoqing,HE Kaiming,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
    [15] LIU Wei,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision,Amsterdam,2016:21-40.
  • 加载中
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  37
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 修回日期:  2022-02-13
  • 网络出版日期:  2022-03-01

目录

    /

    返回文章
    返回