Study on optimization and evaluation of continuous mining scheme in coal seam group
-
摘要: 为优选榆树岭矿煤层群接续开采方案,利用FLAC3D模拟研究了下行开采和上行开采2种煤层群接续开采方案下煤层完整性和工作面应力分布规律,并比较了2种方案的经济效益。结果表明:上行开采时煤层受到一定程度的塑性破坏,但通过对下7、下8煤层工作面运输巷、回风巷与下10煤层工作面运输巷、回风巷内错10 m布置,可有效减小煤层塑性区破坏范围,下7、下8煤层工作面未破坏区占比分别为87.5%,60.4%,煤层完整性满足安全回采要求;相较于下行开采,上行开采时下7、下8煤层工作面平均应力分别降低了45.3%,34.9%,下7、下8煤层工作面最大支承应力分别降低了66.7%,36.4%,且矿井经济效益提高了64.9%。因此优选上行开采作为榆树岭矿煤层群接续开采方案。采用层次分析法和模糊数学理论对煤层群接续开采方案优选结果进行了理论验证:通过建立煤层群接续开采方案综合评价指标模型,构造准则层相对于目标层与指标层的判断矩阵并进行一致性检验,得到评价指标权重向量;采用线性函数法和二元对比排序法构造了指标层各因素相对于下行开采和上行开采的隶属度矩阵,求得综合隶属度指标矩阵;根据评价指标权重向量和综合隶属度指标矩阵,得到下行开采、上行开采方案的综合评价权重分别为0.170 87,0.704 42,验证了上行开采作为该矿煤层群接续开采最优方案的可行性。Abstract: In order to optimize the continuous mining scheme of coal seam group in Yushuling Coal Mine, FLAC3D simulation is used to study the coal seam integrity and working face stress distribution law under two continuous mining schemes of downward mining and upward mining of coal seam group, and the economic benefits of the two schemes are compared. The results show that the coal seam suffers plastic damage to a certain extent during upward mining, but the damage scope of the coal seam plastic zone can be effectively reduced by arranging the transportation roadway and return air roadway of the lower No.7 and No.8 coal seams and the transportation roadway and return air roadway of the lower No.10 coal seam in an inboard way of 10 m. The undamaged areas of the lower No.7 and No.8 coal seams account for 87.5% and 60.4% respectively, and the integrity of the coal seam meets the requirements of safe mining. Compared with the downward mining, the average stress of the lower No.7 and No.8 coal seams during upward mining is reduced by 45.3% and 34.9% respectively, and the maximum supporting stress of the lower No.7 and No.8 coal seams is reduced by 66.7% and 36.4% respectively, and the economic benefit increase by 64.9%. Therefore, the upward mining is preferred as the continuous mining scheme of coal seam group in Yushuling Coal Mine. The optimization result of continuous mining scheme of coal seam group is theoretically verified by using analytic hierarchy process and fuzzy mathematics theory. By establishing the comprehensive evaluation index model of the coal seam group continuous mining scheme, constructing the judgment matrix of the criterion layer relative to the target layer and the index layer and carrying out the consistency test, the evaluation index weight vector is obtained. The membership degree matrix of each factor of the index layer relative to the downward mining and upward mining is constructed by using the linear function method and the binary comparison and ranking method, and the comprehensive membership degree index matrix is obtained. According to the evaluation index weight vector and the comprehensive membership index matrix, the comprehensive evaluation weights of the downward mining and upward mining schemes are obtained as 0.170 87 and 0.704 42 respectively, which verifies the feasibility of upward mining as the optimal scheme for the continuous mining of the coal seam group in this mine.
-
表 1 模型煤岩层参数
Table 1. Coal strata parameters of model
序号 岩性 厚度/m 密度/(kg·m−3) 体积模量/MPa 剪切模量/MPa 抗拉强度/MPa 黏聚力/MPa 内摩擦角/(°) 1 细砂岩 17.07 2 630 2 643 1 820 1.46 3.80 40.23 2 粉砂岩 2.32 2 660 3 550 2 345 1.38 2.98 39.60 3 下10煤 6.88 1 350 2 139 1 204 0.78 1.52 48.23 4 粗砂岩 4.40 2 490 2 679 1 764 1.49 0.42 43.15 5 砂砾岩 13.20 2 540 2 886 1 901 1.72 0.44 39.60 6 粉砂岩 5.40 2 660 3 550 2 345 1.38 2.98 39.60 7 砂砾岩 13.00 2 540 2 886 1 901 1.72 0.44 39.60 8 中砂岩 4.80 1 460 3 800 1 820 1.53 3.80 40.00 9 粉砂岩 4.00 2 660 3 550 2 345 1.38 2.98 39.60 10 下8煤 0.98 1 350 2 139 1 204 0.78 1.52 48.23 11 细砂岩 11.40 2 630 2 643 1 820 1.46 3.80 40.23 12 粉砂岩 4.00 2 660 3 550 2 345 1.38 2.98 39.60 13 下7煤 2.95 1 350 2 139 1 204 0.78 1.52 48.23 14 粉砂岩 4.00 2 660 3 550 2 345 1.38 2.98 39.60 15 中砂岩 17.70 1 460 3 800 1 820 1.53 3.80 40.00 16 砂砾岩 3.60 2 540 2 886 1 901 1.72 0.44 39.60 17 细砂岩 8.00 2 630 2 643 1 820 1.46 3.80 40.23 18 下5煤 9.20 1 350 2 139 1 204 0.78 1.52 48.23 19 粉砂岩 5.60 2 660 3 550 2 345 1.38 2.98 39.60 20 粉砂岩 14.50 2 660 3 550 2 345 1.38 2.98 39.60 表 2 下7、下8煤层完整性表征参数
Table 2. Integrity characterization parameters of lower No.7 and No.8 coal seams
工作面推进
距离/m塑性区发育高度/m 未破坏区占比/% 本煤层工作面运输巷、
回风巷与下10煤层工作面
运输巷、回风巷平行布置本煤层工作面运输巷、
回风巷与下10煤层工作面
运输巷、回风巷内错5 m布置本煤层工作面运输巷、
回风巷与下10煤层工作面
运输巷、回风巷内错10 m布置下7煤层 下8煤层 下7煤层 下8煤层 下7煤层 下8煤层 下7煤层 下8煤层 30 46.32 未导通上部
下7煤层采空区47.90 40.60 60.40 53.10 87.20 59.40 60 46.21 73.40 45.30 84.40 87.20 89.60 61.70 90 41.23 47.90 41.40 60.40 57.80 85.60 60.20 表 3 煤层群接续开采方案相关指标对比
Table 3. Correlation index comparison of coal seam group continuous mining schemes
接续开采方案 煤层完整性 工作面平均应力/MPa 工作面最大支承应力/MPa 经济效益 下7煤层 下8煤层 下7煤层 下8煤层 下7煤层 下8煤层 年产量/万t 年收入/亿元 下行开采 完整性较好 完整性较好 2.65 1.89 8.02 7.64 41.65 1.79 上行开采 未破坏区占比87.5% 未破坏区占比60.4% 1.45 1.23 5.91 4.86 118.86 5.10 注:煤层完整性、工作面平均应力、工作面最大支承应力属于煤层群接续开采方案优选的必要性指标;经济效益属于煤层群接续开采方案优选的充分性指标。 表 4 AHP单排序结果
Table 4. Single ordering results of AHP
判断矩阵 最大特征值 特征向量 一致性比率 D1 3.086 (0.368 0.082 0.550) 0.074 D2 3.004 (0.122 0.648 0.230) 0.003 D3 3.003 (0.682 0.103 0.216) 0.002 D4 3.018 (0.25 0.75) 0 -
[1] 顾大钊,张勇,曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术,2016,44(1):1-7.GU Dazhao,ZHANG Yong,CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology,2016,44(1):1-7. [2] 高峰,王文才,李建伟,等. 浅埋煤层群开采复合采空区煤自燃预测[J]. 煤炭学报,2020,45(增刊1):336-345.GAO Feng,WANG Wencai,LI Jianwei,et al. Prediction of coal spontaneous combustion in compound gob of shallow seam group mining[J]. Journal of China Coal Society,2020,45(S1):336-345. [3] 彭高友,高明忠,吕有厂,等. 深部近距离煤层群采动力学行为探索[J]. 煤炭学报,2019,44(7):1971-1980.PENG Gaoyou,GAO Mingzhong,LYU Youchang,et al. Investigation on mining mechanics behavior of deep close distance seam group[J]. Journal of China Coal Society,2019,44(7):1971-1980. [4] 程志恒,齐庆新,李宏艳,等. 近距离煤层群叠加开采采动应力−裂隙动态演化特征实验研究[J]. 煤炭学报,2016,41(2):367-375.CHENG Zhiheng,QI Qingxin,LI Hongyan,et al. Evolution of the superimposed mining induced stress-fissure field under extracting of close distance coal seam group[J]. Journal of China Coal Society,2016,41(2):367-375. [5] 洛锋,曹树刚,李国栋,等. 近距离下行逐层开采底板应变时空差异特征[J]. 采矿与安全工程学报,2018,35(5):997-1004.LUO Feng,CAO Shugang,LI Guodong,et al. Temporal-spatial variation characteristics of strain in coal seam floor during downward and layer-by-layer mining in ultra-distance coal seams[J]. Journal of Mining & Safety Engineering,2018,35(5):997-1004. [6] 马振乾,姜耀东,杨英明,等. 芦岭矿近距离煤层重复开采下底板巷道稳定性研究[J]. 岩石力学与工程学报,2015,34(增刊1):3320-3327.MA Zhenqian,JIANG Yaodong,YANG Yingming,et al. Floor roadway stability in repeated mining of close distance coal seams in Luling Coal Mine[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):3320-3327. [7] 马立强,汪理全,张东升,等. 近距离煤层群上行开采可行性研究与工程应用[J]. 湖南科技大学学报(自然科学版),2007(4):1-5.MA Liqiang,WANG Liquan,ZHANG Dongsheng,et al. Application and study on feasibility of near distance coal seam group ascending mining[J]. Journal of Hunan University of Science & Technology(Natural Science Edition),2007(4):1-5. [8] 马立强,汪理全,乔京利,等. 平四矿近距煤层上行开采研究[J]. 采矿与安全工程学报,2008,25(3):357-360. doi: 10.3969/j.issn.1673-3363.2008.03.023MA Liqiang,WANG Liquan,QIAO Jingli,et al. Study of ascending mining of short-range-seams in Pingdingshan No. 4 Coal Mine[J]. Journal of Mining & Safety Engineering,2008,25(3):357-360. doi: 10.3969/j.issn.1673-3363.2008.03.023 [9] 韩军,张宏伟,张普田,等. 开滦矿区近距离煤层群上行开采可行性研究[J]. 煤炭科学技术,2011,39(10):14-17.HAN Jun,ZHANG Hongwei,ZHANG Putian,et al. Feasibility study on upward mining in seam group with short distance to each other in Kailuan Mining Area[J]. Coal Science and Technology,2011,39(10):14-17. [10] 李杨,雷明星,郑庆学,等. 近距离“薄−中−厚”交错分布煤层群上行协调开采定量判别研究[J]. 煤炭学报,2019,44(增刊2):410-418.LI Yang,LEI Mingxing,ZHENG Qingxue,et al. Quantitative criterion on coordinated ascending mining in close multiple "thin-medium-thick" coal seams[J]. Journal of China Coal Society,2019,44(S2):410-418. [11] 王寅,付兴玉,孔令海,等. 近距离煤层群上行式开采悬空结构稳定性研究[J]. 煤炭科学技术,2020,48(12):95-100.WANG Yin,FU Xingyu,KONG Linghai,et al. Study on stability of dangling structure in ascending mining contiguous coal seams[J]. Coal Science and Technology,2020,48(12):95-100. [12] 靳红梅,党琪,李洪安,等. 基于FCE−AHP的矿井通风质量动态评价[J]. 工矿自动化,2021,47(9):77-84.JIN Hongmei,DANG Qi,LI Hong'an,et al. Dynamic evaluation of mine ventilation quality based on FCE-AHP[J]. Industry and Mine Automation,2021,47(9):77-84. [13] 张小东,张硕,孙庆宇,等. 基于AHP和模糊数学评价地质构造对煤层气产能的影响[J]. 煤炭学报,2017,42(9):2385-2392.ZHANG Xiaodong,ZHANG Shuo,SUN Qingyu,et al. Evaluating the influence of geological structure to CBM productivity based on AHP and fuzzy mathematics[J]. Journal of China Coal Society,2017,42(9):2385-2392. [14] 孟祥瑞,徐铖辉,高召宁,等. 采场底板应力分布及破坏机理[J]. 煤炭学报,2010,35(11):1832-1836.MENG Xiangrui,XU Chenghui,GAO Zhaoning,et al. Stress distribution and damage mechanism of mining floor[J]. Journal of China Coal Society,2010,35(11):1832-1836. [15] 王连国,韩猛,王占盛,等. 采场底板应力分布与破坏规律研究[J]. 采矿与安全工程学报,2013,30(3):317-322.WANG Lianguo,HAN Meng,WANG Zhansheng,et al. Stress distribution and damage law of mining floor[J]. Journal of Mining & Safety Engineering,2013,30(3):317-322. [16] 任子晖,陈泽彭,吴新忠,等. 矿井通风系统健康评价研究[J]. 工矿自动化,2021,47(9):70-76.REN Zihui,CHEN Zepeng,WU Xinzhong,et al. Research on health evaluation of mine ventilation system[J]. Industry and Mine Automation,2021,47(9):70-76. [17] 李少辉. 新城金矿难采矿体采矿方法研究[D]. 沈阳: 东北大学, 2011.LI Shaohui. Study on mining method of difficult mining body in Xincheng Gold Mine[D]. Shenyang: Northeastern University, 2011.