Study on failure characteristics of coal sample under different unloading stress paths
-
摘要: 现有对煤样破坏特征的研究存在力学参数测试较单一、应力加载方向局限性较大等问题,在反演真实地质情况下数值模拟效果存在偏差,并且对煤岩动力灾害和冲击倾向性判定是基于现场实验进行的宏观研究,对于真三轴不同卸荷应力路径下煤样的破坏特性机理研究较少。针对上述问题,以陕西彬长胡家河煤矿工程地质为研究背景,利用高频振动采集及孔内成像三轴动静载实验系统设计了3种不同卸荷应力路径下煤样真三轴实验,对煤样破坏特征、峰值强度特性、声发射响应特征和分形规律进行研究。结果表明:① 3种不同卸荷应力路径下煤样破坏模式均为拉−剪复合破坏,煤样宏观裂纹的起裂破坏大多发生在强度相对较低的煤样中;各煤样均为轴向应力不断增加,各水平应力在逐渐降低的过程中为煤样提供了拉应力,导致不同卸荷应力路径下煤样各表面破坏形态显著不同。② 3种不同卸荷应力路径下,峰值破坏阶段的应力存在明显差异,标准差达4.35 MPa,占峰值强度平均值的29.25%,当应力载荷超出3种应力路径峰值强度平均值14.87 MPa时,煤样均发生破坏。③ 在高静载作用下,煤样初始受载后孔隙压密,内部结构较均匀,无裂隙扩展使得在初始阶段损伤变量为0;在损伤稳定发展阶段,煤样内部孔隙达到极限状态发生破裂形成微裂隙,损伤变量为0.04~0.17;在加载过程中微裂隙迅速发育、扩展并汇集成裂隙网,煤样出现宏观破坏,煤样承载能力迅速下降,在损伤加速发展阶段损伤变量呈先急剧增加后平稳的趋势,最大损伤变量达1.0。当煤样受力失稳发生拉−剪破坏后,声发射能量出现突增现象;当声发射能量与损伤变量曲线交汇时煤样开始破裂,声发射能量与煤样破坏具有良好的耦合性。④ 在不同卸荷应力路径下,煤样分形维数越大,破碎程度越高。Abstract: The existing research on the failure characteristics of coal samples has some problems, such as single mechanical parameter test and large limitation of stress loading direction. The numerical simulation effect has deviation in the inversion of real geological conditions, and the determination of coal and rock dynamic disaster and bursting liability is based on the macro-research of field experiments. There are few studies on the failure mechanism of coal samples under different unloading stress paths in true triaxial. In order to solve the above problems, taking the engineering geology of Hujiahe Coal Mine in Binchang, Shaanxi Province as the research background, the true triaxial test of coal samples under three different unloading stress paths is designed by using the triaxial dynamic and static load test system of high-frequency vibration acquisition and borehole imaging. And the failure characteristics, peak strength characteristics, acoustic emission response characteristics and fractal law of coal samples are studied. ① The results show that the failure modes of coal samples under three different unloading stress paths are tensile-shear composite failure, and the initiation failure of macro-cracks mostly occurs in the coal samples with relatively low strength. The axial stress of each coal sample increases continuously, and each horizontal stress provides tensile stress in the process of gradually decreasing, resulting in significantly different surface failure forms of coal samples under different unloading stress paths. ② There are obvious differences in the stress of the three different unloading stress paths at the peak failure stage, and the standard deviation reaches 4.35 MPa, accounting for 29.25% of the average peak strength. When the stress load exceeds the average peak strength of the three stress paths by 14.87 MPa, the coal samples are damaged. ③ Under the action of high static load, the pores of the coal samples are compacted after initial loading. The internal structure is relatively uniform, and no fracture expands. The damage variable value is 0 in the initial stage. In the stable development stage of damage, the internal pores of the coal samples reach the limit state and break to form micro-fracture, and the damage variable value is 0.04-0.17. During the loading process, the micro-fracture develop rapidly, expand and converge into the fracture network, and the coal sample is macroscopically damaged. The bearing capacity of the coal sample decreases rapidly, the damage variable value increases sharply first and then stabilizes, and the maximum damage variable value reaches 1.0 in the stage of accelerated damage development. The acoustic emission(AE) energy value increases suddenly when the coal sample is damaged by stress instability and tensile-shear failure. When the AE energy intersects with the damage variable curve, the coal sample begins to break, and the AE energy has a good coupling with the coal sample failure. ④ Under different unloading stress paths, the larger the fractal dimension of coal sample, the higher the degree of fragmentation.
-
表 1 煤样力学参数
Table 1. Mechanical parameters of coal samples
抗压强度/MPa 抗拉强度/MPa 弹性模量/GPa 泊松比 17 2.13 0.81 0.02 表 3 各煤样块体区间碎屑累计质量百分比及分形维数
Table 3. Acumulative debris mass percentage and fractal dimension in each block interval of the coal samples
组别
路径各煤样块体区间碎屑累计质量百分比/% 分形维数 25~30 mm 13~25 mm 6~13 mm 3~6 mm 2~3 mm 1~2 mm 0.25~1 mm
第1组1 91.202 55.029 38.099 25.321 23.138 17.701 11.216 1.47 2 86.338 52.908 31.536 18.498 17.317 14.241 10.943 1.59 3 98.674 81.591 37.910 25.546 24.298 21.295 18.916 1.48
第2组1 96.697 59.899 46.707 34.336 31.033 22.091 13.108 1.36 2 99.954 64.733 33.627 20.356 19.428 13.813 8.631 1.50 3 95.923 81.411 52.670 33.225 30.901 23.522 20.342 1.38
第3组1 99.869 65.955 39.720 23.287 20.810 14.887 8.321 1.45 2 99.485 73.011 33.658 22.839 18.975 17.373 14.053 1.54 3 78.328 62.716 41.811 31.147 28.769 24.434 19.179 1.44 -
[1] 李海涛,齐庆新,赵善坤,等. 煤矿动力灾害广义“三因素”机理探讨[J]. 煤炭科学技术,2021,49(6):42-52.LI Haitao,QI Qingxin,ZHAO Shankun,et al. Discussion on generalized "three factors" mechanism of coal mine dynamic disaster[J]. Coal Science and Technology,2021,49(6):42-52. [2] 胡国忠,王春博,许家林,等. 微波辐射降低硬煤冲击倾向性实验研究[J]. 煤炭学报,2021,46(2):450-465.HU Guozhong,WANG Chunbo,XU Jialin,et al. Experimental investigation on decreasing burst tendency of hard coal using microwave irradiation[J]. Journal of China Coal Society,2021,46(2):450-465. [3] 齐庆新,李宏艳,邓志刚,等. 我国冲击地压理论、技术与标准体系研究[J]. 煤矿开采,2017,22(1):1-5,26.QI Qingxin,LI Hongyan,DENG Zhigang,et al. Studying of standard system and theory and technology of rock burst in domestic[J]. Coal Mining,2017,22(1):1-5,26. [4] 窦凤金,屠世浩,吴其. 巨厚煤层应力集中诱发冲击矿压的作用机理[J]. 煤炭工程,2009,41(7):75-78. doi: 10.3969/j.issn.1671-0959.2009.07.031DOU Fengjin,TU Shihao,WU Qi. Stress concentration role mechanism of ultra thick seam to cause pressure bumping[J]. Coal Engineering,2009,41(7):75-78. doi: 10.3969/j.issn.1671-0959.2009.07.031 [5] 刘广建. 裂缝煤岩力学特性与冲击失稳宏细观机制研究[D]. 徐州: 中国矿业大学, 2018.LIU Guangjian. Mechanical properties of cracked coal-rock mass and its macro and meso mechnism of rockburst[D]. Xuzhou: China University of Mining and Technology, 2018. [6] 齐庆新,赵善坤,李海涛,等. 我国煤矿冲击地压防治的几个关键问题[J]. 煤矿安全,2020,51(10):135-143.QI Qingxin,ZHAO Shankun,LI Haitao,et al. Several key problems of coal bump prevention and control in China's coal mines[J]. Safety in Coal Mines,2020,51(10):135-143. [7] KAISER P K,TANG Chunan. Numerical simulation of damage accumulation and seismic energy release during brittle rock failure-part II:rib pillar collapse[J]. International Journal of Rock Mechanics Mining Science,1998,35(2):123-134. doi: 10.1016/S0148-9062(97)00010-7 [8] 杨磊. 不同冲击倾向性煤体声发射能量特征与时空演化规律研究[J]. 采矿与安全工程学报,2020,37(3):525-532.YANG Lei. Acoustic emission energy characteristics and time-space evolution law of coal with different rockburst tendency[J]. Journal of Mining and Safety Engineering,2020,37(3):525-532. [9] 李勋达. 煤岩煤样破坏过程中声发射实验及其冲击倾向性研究[D]. 徐州: 中国矿业大学, 2020.LI Xunda. Study on acoustic emission test and impact tendency in the failure process of coal rock sample [D]. Xuzhou: China University of Mining and Technology, 2020. [10] 崔峰,贾冲,来兴平,等. 近距离强冲击倾向性煤层上行开采覆岩结构演化特征及其稳定性研究[J]. 岩石力学与工程学报,2020,39(3):507-521.CUI Feng,JIA Chong,LAI Xingping,et al. Study on the evolution characteristics and stability of overburden structure in upward mining of short distance coal seams with strong burst tendency[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(3):507-521. [11] 左建平,谢和平,孟冰冰,等. 煤岩组合体分级加卸载特性的实验研究[J]. 岩土力学,2011,32( 5):1287-1296. doi: 10.3969/j.issn.1000-7598.2011.05.002ZUO Jianping,XIE Heping,MENG Bingbing,et al. Experimental research on loading-unloading behavior of coal-rock combination bodies at different stress levels[J]. Rock and Soil Mechanics,2011,32( 5):1287-1296. doi: 10.3969/j.issn.1000-7598.2011.05.002 [12] 左建平,陈岩,崔凡. 不同煤岩组合体力学特性差异及冲击倾向性分析[J]. 中国矿业大学学报,2018,47(1):81-87.ZUO Jianping,CHEN Yan,CUI Fan. Investigation on mechanical properties and rock burst tendency of different coal-rock combined bodies[J]. Journal of China University of Mining and Technology,2018,47(1):81-87. [13] 杨磊,高富强,王晓卿,等. 煤岩组合体的能量演化规律与破坏机制[J]. 煤炭学报,2019,44(12):3894-3902.YANG Lei,GAO Fuqiang,WANG Xiaoqing,et al. Energy evolution law and failure mechanism of coal-rock combined specimen[J]. Journal of China Coal Society,2019,44(12):3894-3902. [14] 潘一山,代连朋,李国臻,等. 煤矿冲击地压与冒顶复合灾害研究[J]. 煤炭学报,2021,46(1):112-122.PAN Yishan,DAI Lianpeng,LI Guozhen,et al. Study on compound disaster of rock burst and roof falling in coal mines[J]. Journal of China Coal Society,2021,46(1):112-122. [15] DOU Linming,MU Zonglong,LI Zhenlei,et al. Research progress of monitoring,forecasting,and prevention of rock burst in underground coal mining in China[J]. International Coal Science and Technology,2014,1(3):278-288. doi: 10.1007/s40789-014-0044-z [16] 齐庆新,李晓璐,赵善坤. 煤矿冲击地压应力控制理论与实践[J]. 煤炭科学技术,2013,41(6):1-5.QI Qingxin,LI Xiaolu,ZHAO Shankun. Theory and practices on stress control of mine pressure bumping[J]. Coal Science and Technology,2013,41(6):1-5. [17] 王向宇,周宏伟,钟江城,等. 三轴循环加卸载下深部煤体损伤的能量演化和渗透特性研究[J]. 岩石力学与工程学报,2018,37(12):2676-2684.WANG Xiangyu,ZHOU Hongwei,ZHONG Jiangcheng,et al. Study on energy evolution and permeability characteristics of deep coal damage under triaxial cyclic loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(12):2676-2684. [18] 姜耀东,赵毅鑫,何满潮. 冲击地压机制的细观研究[J]. 岩石力学与工程学报,2007,26(5):902-907.JIANG Yaodong,ZHAO Yixin,HE Manchao. Investigation on mechanism of coal mine bumps based on mesoscopic experiments[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(5):902-907.