留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于透明地质的综采工作面三维煤层建模

薛国华

薛国华. 基于透明地质的综采工作面三维煤层建模[J]. 工矿自动化,2022,48(4):135-141.  doi: 10.13272/j.issn.1671-251x.2021090079
引用本文: 薛国华. 基于透明地质的综采工作面三维煤层建模[J]. 工矿自动化,2022,48(4):135-141.  doi: 10.13272/j.issn.1671-251x.2021090079
XUE Guohua. Three-dimensional coal seam modeling of fully mechanized working face based on transparent geology[J]. Journal of Mine Automation,2022,48(4):135-141.  doi: 10.13272/j.issn.1671-251x.2021090079
Citation: XUE Guohua. Three-dimensional coal seam modeling of fully mechanized working face based on transparent geology[J]. Journal of Mine Automation,2022,48(4):135-141.  doi: 10.13272/j.issn.1671-251x.2021090079

基于透明地质的综采工作面三维煤层建模

doi: 10.13272/j.issn.1671-251x.2021090079
基金项目: 陕西省自然科学基础研究计划−陕煤联合基金资助项目(2019JLM−10)。
详细信息
    作者简介:

    薛国华(1976—),男,陕西绥德人,高级工程师,现主要从事煤矿综采自动化、智能化方面的研究工作,E-mail: 3229939759@qq.com

  • 中图分类号: TD67

Three-dimensional coal seam modeling of fully mechanized working face based on transparent geology

  • 摘要: 基于透明地质的三维煤层建模方法是间接解决煤岩识别难题的有效途径。现有三维煤层建模方法的研究大多集中于对空间三维实体的表达,对开采过程中煤层顶底板动态变化的过程缺乏研究,对于复杂地质条件的煤层顶底板高程的预测精度不高,难以满足采煤实际需求。针对上述问题,提出了一种基于透明地质的综采工作面三维煤层建模方法。基于进回风巷地质数据、钻孔测量数据、工作面切眼数据及利用三维地震再解释技术、槽波地震勘探技术与无线电磁波透视技术获得的煤层地质数据,应用离散平滑插值(DSI)算法预测煤层顶底板高程,构建综采工作面静态三维煤层模型。为提高工作面静态三维煤层模型精度,通过切眼开采新揭露的地质信息和DSI算法对其进行动态更新,获得更为精确的工作面动态三维煤层模型,基于更新后的三维煤层模型动态规划采煤机截割曲线,指导采煤机进行自动调高控制,从而实现自适应割煤。将该方法应用于黄陵一号煤矿810综采工作面,结果表明:DSI算法对煤层顶底板高程预测效果优于克里金插值算法和样条函数插值算法,插值平均绝对误差为0.015 5 m;每截割5 m对三维煤层模型更新1次,煤层顶底板高程预测误差≤6.3 cm,满足采煤机截割轨迹精确规划要求。

     

  • 图  1  基于透明地质的综采工作面三维煤层建模

    Figure  1.  Three-dimensional coal seam modeling of fully mechanized working face based on transparent geology

    图  2  3种插值算法插值计算结果对比

    Figure  2.  Comparison of interpolation calculation results of three interpolation algorithms

    图  3  黄陵一号煤矿810综采工作面静态三维煤层模型

    Figure  3.  Static three-dimensional coal seam model of 810 fully mechanized working face of Huangling No.1 Coal Mine

    图  4  黄陵一号煤矿810综采工作面剖面平面图

    Figure  4.  Section plan of 810 fully mechanized working face of Huangling No.1 Coal Mine

    图  5  黄陵一号煤矿810综采工作面6个剖面的顶底板曲线

    Figure  5.  Roof and floor curves of 6 sections in 810 fully mechanized working face of Huangling No.1 Coal Mine

    图  6  黄陵一号煤矿 810综采工作面动态更新后的三维煤层模型

    Figure  6.  Dynamic updated three-dimensional coal seam model of 810 fully mechanized working face in Huangling No.1 Coal Mine

    图  7  距离更新点不同距离时煤层顶板高程预测误差

    Figure  7.  The prediction error of coal seam roof elevation at different distances from the update point

    表  1  3种插值算法MAE的对比

    Table  1.   Comparison of mean absolute error (MAE) of three interpolation algorithms m

    克里金插值算法DSI算法样条函数插值算法
    0.022 50.015 50.231 2
    下载: 导出CSV

    表  2  顶板高程预测误差

    Table  2.   Roof elevation prediction error m

    采样点MAE采样点MAE采样点MAE
    1 0.053840 16 0.910000 31 0.501333
    2 0.091417 17 0.617000 32 0.562667
    3 0.337333 18 0.114767 33 0.497667
    4 0.468333 19 0.178380 34 0.431667
    5 0.885000 20 0.420667 35 0.250667
    6 1.010000 21 0.684667 36 0.108667
    7 1.030000 22 0.742000 37 0.103667
    8 1.050667 23 0.879333 38 0.155333
    9 0.416667 24 1.036000 39 0.003667
    10 0.051093 25 0.980000 40 0.004000
    11 0.271667 26 0.890333 41 0.153333
    12 0.507333 27 0.357183 42 0.286000
    13 0.473333 28 0.140887 43 0.362667
    14 0.619333 29 0.019613 44 0.552333
    15 0.920000 30 0.287333 45 0.229667
    下载: 导出CSV
  • [1] 王国法,刘峰,庞义辉,等. 煤矿智能化−煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349-357.

    WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349-357.
    [2] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277-2284.

    YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277-2284.
    [3] 张小艳,朱圣凯,杨鑫磊. 采煤工作面煤层三维地质建模[J]. 科学技术与工程,2020,20(10):4049-4055. doi: 10.3969/j.issn.1671-1815.2020.10.038

    ZHANG Xiaoyan,ZHU Shengkai,YANG Xinlei. Three-dimensional geological modeling of coal seam in mining face[J]. Science Technology and Engineering,2020,20(10):4049-4055. doi: 10.3969/j.issn.1671-1815.2020.10.038
    [4] 贾庆仁,车德福,李佳徐,等. 动态精化的煤层三维建模方法[J]. 东北大学学报(自然科学版),2018,39(5):726-730.

    JIA Qingren,CHE Defu,LI Jiaxu,et al. Three-dimensional modeling method of coal seam with gradual refinement[J]. Journal of Northeastern University (Natural Science),2018,39(5):726-730.
    [5] 刘万里,张学亮,王世博. 采煤工作面煤层三维模型构建及动态修正技术[J]. 煤炭学报,2020,45(6):1973-1983.

    LIU Wanli,ZHANG Xueliang,WANG Shibo. Modeling and dynamic correction technology of 3D coal seam model for coal-mining face[J]. Journal of China Coal Society,2020,45(6):1973-1983.
    [6] 肖静. 基于伪点剔除与四域样条插值的三维煤层建模[J]. 科技通报,2014,30(12):166-168. doi: 10.3969/j.issn.1001-7119.2014.12.056

    XIAO Jing. 3D coal seam modeling based on pseudo point elimination and four fields spline interpolation[J]. Bulletin of Science and Technology,2014,30(12):166-168. doi: 10.3969/j.issn.1001-7119.2014.12.056
    [7] 朱德福,邢存恩,乔港介. 基于改进三棱柱体元构建三维煤层模型的实现[J]. 工矿自动化,2014,40(7):22-24.

    ZHU Defu,XING Cun'en,QIAO Gangjie. Construction of 3D coal seam model based on improved triangular prism element[J]. Industry and Mine Automation,2014,40(7):22-24.
    [8] 修春华,车德福,贾国兵. 含复杂地质构造的三维煤层动态建模方法[J]. 矿山测量,2015(6):52-55,59. doi: 10.3969/j.issn.1001-358X.2015.06.16

    XIU Chunhua,CHE Defu,JIA Guobin. Dynamic modeling method of 3D coal seam containing complex geological structure[J]. Mine Surveying,2015(6):52-55,59. doi: 10.3969/j.issn.1001-358X.2015.06.16
    [9] 周为喜,陈玉华,杨永国,等. 基于角点网格的煤层三维建模与可视化研究[J]. 煤田地质与勘探,2016,44(5):53-57. doi: 10.3969/j.issn.1001-1986.2016.05.010

    ZHOU Weixi,CHEN Yuhua,YANG Yongguo,et al. 3D modeling and visualization of coal reservoir based on corner-point grid[J]. Coal Geology & Exploration,2016,44(5):53-57. doi: 10.3969/j.issn.1001-1986.2016.05.010
    [10] 李晓军,胡金虎,朱合华,等. 基于Kriging方法的煤层厚度估计及三维煤层建模[J]. 煤炭学报,2008,33(7):765-769. doi: 10.3321/j.issn:0253-9993.2008.07.009

    LI Xiaojun,HU Jinhu,ZHU Hehua,et al. The estimation of coal thickness based on Kriging technique and 3D coal seam modeling[J]. Journal of China Coal Society,2008,33(7):765-769. doi: 10.3321/j.issn:0253-9993.2008.07.009
    [11] 吴王文. 基于GIS的煤层厚度变化规律及三维建模研究[D]. 徐州: 中国矿业大学, 2016.

    WU Wangwen. Study on coal seam thickness variation and 3D modeling based on GIS[D]. Xuzhou: China University of Mining and Technology, 2016.
    [12] 张龙正. 基于MicroStation的煤田地质三维建模研究[J]. 煤炭工程,2020,52(7):37-40.

    ZHANG Longzheng. Coalfield geology 3D modeling with MicroStation[J]. Coal Engineering,2020,52(7):37-40.
    [13] 李章林,吴冲龙,张夏林,等. 煤炭三维地质建模信息系统的研制及关键技术[J]. 煤炭学报,2011,36(7):1117-1123.

    LI Zhanglin,WU Chonglong,ZHANG Xialin,et al. Key technologies and development of a 3D coal geological modeling information system[J]. Journal of China Coal Society,2011,36(7):1117-1123.
    [14] 刘勇,崔洪庆. 基于单元划分的复杂岩层面三维建模方法研究[J]. 工矿自动化,2017,43(12):99-103.

    LIU Yong,CUI Hongqing. Research on 3D modeling method of complex rock strata surfaces based on unit division[J]. Industry and Mine Automation,2017,43(12):99-103.
    [15] 荆永滨,杜学胜,张瑞林,等. 复杂地质构造煤层三维模型自动构建技术[J]. 辽宁工程技术大学学报(自然科学版),2016,35(3):243-247.

    JING Yongbin,DU Xuesheng,ZHANG Ruilin,et al. Techniques for automatic 3D modeling of coal seam with complicated geological structure[J]. Journal of Liaoning Technical University (Natural Science Edition),2016,35(3):243-247.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  55
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 修回日期:  2022-01-25
  • 网络出版日期:  2022-04-15

目录

    /

    返回文章
    返回