留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超声波全断面测风的矿井风网实时解算方法

宋涛 王建文 吴奉亮 张国群 陈菲 冯雄 李龙清

宋涛,王建文,吴奉亮,等. 基于超声波全断面测风的矿井风网实时解算方法[J]. 工矿自动化,2022,48(4):114-120, 141.  doi: 10.13272/j.issn.1671-251x.2021090073
引用本文: 宋涛,王建文,吴奉亮,等. 基于超声波全断面测风的矿井风网实时解算方法[J]. 工矿自动化,2022,48(4):114-120, 141.  doi: 10.13272/j.issn.1671-251x.2021090073
SONG Tao, WANG Jianwen, WU Fengliang, et al. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation,2022,48(4):114-120, 141.  doi: 10.13272/j.issn.1671-251x.2021090073
Citation: SONG Tao, WANG Jianwen, WU Fengliang, et al. Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement[J]. Journal of Mine Automation,2022,48(4):114-120, 141.  doi: 10.13272/j.issn.1671-251x.2021090073

基于超声波全断面测风的矿井风网实时解算方法

doi: 10.13272/j.issn.1671-251x.2021090073
基金项目: 国家自然科学基金项目(51974232)。
详细信息
    作者简介:

    宋涛(1988-),男,河南西华人,工程师,硕士,主要从事矿井通风与安全方面的研究工作,E-mail:1345465537@qq.com

    通讯作者:

    吴奉亮(1977-),男,四川新都人,教授,博士,主要从事矿井通风与安全方面的教学与研究工作,E-mail:wufl@xust.edu.cn

  • 中图分类号: TD722

Real-time calculation method of mine ventilation network based on ultrasonic full-section wind measurement

  • 摘要: 煤矿井下风流时刻在变化,矿井通风网络解算是一种静态解算方法,无法实时解算动态风流,需要用风速传感器获取动态风流数据。但目前风速传感器稳定性差、覆盖不全面。针对上述问题,提出了一种基于超声波全断面测风的矿井风网实时解算方法。利用超声波在两点间顺风、逆风传播的时间差实现巷道全断面测风,风速测定结果与声速无关,不受声速、温湿度和气压等参数影响,而且避免了传统风速传感器的风道易受矿尘堵塞的难题,测风装置的分辨率达0.03 m/s。通过不断采集主要通风机风量、风压实时工况和部分井巷实时风量解算风网,利用固定风量法将监测风量融入通风网络中,解算得到全风网实时风量,采用拉格朗日乘数法实时修正解算风量与风阻,以解决冗余风量监测分支引起的节点风量不平衡、风阻波动产生的回路风压不平衡问题。通过算例验证了该实时解算方法的解算结果与监测值高度吻合,同时又严格遵循回路风压平衡与节点流量平衡的约束。对柠条塔煤矿含1 319条分支、945个节点的风网进行实时解算,1次解算仅用时0.9 s,解算迭代收敛次数约为105,且解算结果随时间不断更新,验证了该实时解算方法的可行性。

     

  • 图  1  超声波测风原理

    Figure  1.  Wind measurement principle of ultrasonic

    图  2  超声波全断面测风装置安装实物

    Figure  2.  Installation material object of ultrasonic full-section wind speed measuring device

    图  3  简化的矿井通风网络

    Figure  3.  Simplified mine ventilation network

    图  4  风量实时测值显示界面

    Figure  4.  Display interface of real-time values of air volume

    图  5  风速监测值统计

    Figure  5.  Statistical chart of wind speed monitoring values

    图  6  人工测风与超声波测风对比

    Figure  6.  Comparison between manual wind speed measurement values and ultrasonic wind speed measurement values

    图  7  基于WebGL的风网实时解算前端显示界面

    Figure  7.  The front-end display interface of real-time calculation results of mine ventilation network based on WebGl technology

    表  1  图3算例风网实时解算结果

    Table  1.   Real-time calculation results of the example ventilation network of figure 3

    分支号R* 元素/
    (${\rm{N}} \cdot {{\rm{s}}^{2}} \cdot {{\rm{M}}^{-8}}$)
    QM元素/
    (${\rm{m} }^{3}\cdot {\rm{s} }^{-1}$)
    Q0元素/
    (${\rm{m}}^{3}\cdot {\rm{s}}^{-1}$)
    Q1元素/
    (${\rm{m}}^{3}\cdot {\rm{s}}^{-1}$)
    10.007583.088.087.0
    20.380047.547.0
    30.500040.540.0
    40.050027.827.3
    50.200075.374.3
    60.005785.088.087.0
    77.076912.712.712.7
    8087.088.087.0
    下载: 导出CSV

    表  2  图3算例风网实时解算修正结果

    Table  2.   Real-time corrected calculation results of the example ventilation network of figure 3

    分支号Q*元素/
    (m3·s−1
    Q元素/
    (m3·s−1
    R元素/
    (N·s2·m−8
    |QQ0|元素/
    (m3·s−1
    |RR*|/R
    元素/%
    183.085.803550.0185822.2059.6
    247.046.19070.4499751.3115.6
    340.039.612860.5897560.8915.2
    427.327.155690.0469530.646.5
    574.373.346390.2039451.951.9
    685.085.803550.0141232.2059.6
    712.712.457177.2933180.243.0
    887.085.8035502.20
    下载: 导出CSV
  • [1] 周福宝,魏连江,夏同强,等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报,2020,45(6):2225-2235.

    ZHOU Fubao,WEI Lianjiang,XIA Tongqiang,et al. Principle,key technology and preliminary realization of mine intelligent ventilation[J]. Journal of China Coal Society,2020,45(6):2225-2235.
    [2] 张庆华,姚亚虎,赵吉玉. 我国矿井通风技术现状及智能化发展展望[J]. 煤炭科学技术,2020,48(2):97-103.

    ZHANG Qinghua,YAO Yahu,ZHAO Jiyu. Status of mine ventilation technology in China and prospects for intelligent development[J]. Coal Science and Technology,2020,48(2):97-103.
    [3] 吴奉亮,高佳南,常心坦,等. 矿井风网雅可比矩阵对称特性及并行求解模型[J]. 煤炭学报,2016,41(6):1454-1459.

    WU Fengliang,GAO Jianan,CHANG Xintan,et al. Symmetry property of Jacobian matrix of mine ventilation network and its parallel calculation model[J]. Journal of China Coal Society,2016,41(6):1454-1459.
    [4] 倪景峰. 矿井通风仿真系统可视化研究 [D]. 阜新: 辽宁工程技术大学, 2004.

    NI Jingfeng. The study on visualization of mine ventilation simulation [D]. Fuxin: Liaoning Technical University, 2004.
    [5] 朱华新,魏连江,张飞,等. 矿井通风可视化仿真系统的改进研究[J]. 采矿与安全工程学报,2009,26(3):327-331. doi: 10.3969/j.issn.1673-3363.2009.03.015

    ZHU Huaxin,WEI Lianjiang,ZHANG Fei,et al. Improvement of the visual simulation of mine ventilation system[J]. Journal of Mining & Safety Engineering,2009,26(3):327-331. doi: 10.3969/j.issn.1673-3363.2009.03.015
    [6] 卢辉,袁树杰,马瑞峰,等. 基于Ventsim的南山煤矿孤岛工作面均压通风方案研究[J]. 中国安全生产科学技术,2020,16(8):125-130.

    LU Hui,YUAN Shujie,MA Ruifeng,et al. Study on scheme of pressure equalizing ventilation in isolated island working face of Nanshan Coal Mine based on Ventsim[J]. Journal of Safety Science and Technology,2020,16(8):125-130.
    [7] DZIURZYŃSKI W,KRACH A,PAŁKA T. A reliable method of completing and compensating the results of measurements of flow parameters in a network of headings[J]. Archives of Mining Sciences,2015,60(1):3-24. doi: 10.1515/amsc-2015-0001
    [8] 刘鹏,邹德东. 恶劣环境下矿用压差风速传感器关键技术[J]. 煤矿安全,2021,52(7):89-93.

    LIU Peng,ZOU Dedong. Key technology of mine differential pressure and wind speed sensor used in harsh environment[J]. Safety in Coal Mines,2021,52(7):89-93.
    [9] 张巍,李雨成,张欢,等. 面向通风智能化的风速传感器结构化数据降噪方法对比[J]. 中国安全生产科学技术,2021,17(8):70-75.

    ZHANG Wei,LI Yucheng,ZHANG Huan,et al. Comparison of structured data noise reduction methods for airflow speed sensor of intelligent ventilation[J]. Journal of Safety Science and Technology,2021,17(8):70-75.
    [10] 王恩,张浪,李伟,等. 多点移动式测风装置及关键技术[J]. 煤矿安全,2016,47(6):97-99,103.

    WANG En,ZHANG Lang,LI Wei,et al. Key technology of multipoint mobile wind-measured device[J]. Safety in Coal Mines,2016,47(6):97-99,103.
    [11] 李秉芮,王伟,陈凤梅,等. 基于有向通路矩阵法的风速传感器最优布置[J]. 工矿自动化,2021,47(5):52-57.

    LI Bingrui,WANG Wei,CHEN Fengmei,et al. Optimal arrangement of wind speed sensor based on directed path matrix method[J]. Industry and Mine Automation,2021,47(5):52-57.
    [12] 蔡峰,袁媛,刘泽功,等. 超声波在煤矿井下环境中的传播与衰减特性[J]. 中国矿业大学学报,2021,50(4):685-690.

    CAI Feng,YUAN Yuan,LIU Zegong,et al. Propagation and attenuation characteristics of ultrasonic in underground environment of coal mine[J]. Journal of China University of Mining & Technology,2021,50(4):685-690.
    [13] 李伟,霍永金,张浪,等. 矿井通风实时网络解算技术研究[J]. 中国矿业,2016,25(3):167-170. doi: 10.3969/j.issn.1004-4051.2016.03.041

    LI Wei,HUO Yongjin,ZHANG Lang,et al. Research on ventilation real time network solution[J]. China Mining Magazine,2016,25(3):167-170. doi: 10.3969/j.issn.1004-4051.2016.03.041
    [14] 谈国文. 复杂矿井通风网络可视化动态解算及预警技术[J]. 工矿自动化,2020,46(2):6-11.

    TAN Guowen. Visualized dynamic solution and early warning technology for ventilation network of complex mine[J]. Industry and Mine Automation,2020,46(2):6-11.
    [15] 谭国运. 矿井通风网络分析及电算方法 [M]. 北京: 煤炭工业出版社, 1991.

    TAN Guoyun. Mine ventilation network analysis and computer calculation method [M]. Beijing: China Coal Industry Publishing House, 1991.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  459
  • HTML全文浏览量:  89
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2022-01-25
  • 网络出版日期:  2022-03-05

目录

    /

    返回文章
    返回