Numerical study of pulverized coal ignition under different oxygen conditions based on solid-gas coupling
-
摘要: 平面热板实验是评价煤粉自热和着火危害最常用的方法,特别适用于煤粉在热表面积聚的情况。针对目前基于热板实验的煤粉着火特性的研究缺乏对煤粉与空气相耦合的煤粉着火特性的数值研究问题,在文献[
9 ]的基础上,建立了固−气耦合的煤自燃多物理场数值模型。模拟结果表明:烟煤煤粉的厚度分别为5,12.5,20,30 mm,直径为100 mm,煤粉发生热失控情况时,烟煤煤粉在30 min之前缓慢升温到170 ℃,在煤粉层中心处出现高温区域,在37 min时突然发生热失控。烟煤煤粉未发生热失控情况时,煤样在30 min后温度变得稳定,温度低于150 ℃,不存在明显高温点。模拟结果与文献[9 ]的实验结果有较好的一致性。在更厚烟煤煤粉条件下,对该数值模型最小点火温度与文献[9 ]结果进行对比,两者差异较小,验证该数值模型的可靠性。基于该数值模型,分析了不同氧气体积分数条件下烟煤煤粉自燃特性,结果表明:① 随着烟煤煤粉厚度增加,最小点火温度呈减小趋势。② 热失控阶段,高温区域位于煤粉中心上部位置。③ 煤粉前期温升是由于热板热传递导致,随煤粉温度增加,煤氧化反应主导因素由热量转变为氧气。④ 煤粉温度峰值随氧气体积分数线性增加,点火延迟时间随氧气体积分数呈指数减小。Abstract: The plane hot plate test is the most commonly used method to evaluate the self-heating and ignition hazards of pulverized coal, especially for the accumulation of pulverized coal on the hot surface. In order to solve the problem of lacking of numerical study on the ignition characteristics of pulverized coal coupled with air based on hot plate experiment, a multi-physical field numerical model of coal spontaneous combustion with solid gas coupling is established on the basis of literature [9 ]. The simulation results show that the thickness of bituminous pulverized coal is 5 mm, 12.5 mm, 20 mm and 30 mm, and the diameter is 100 mm. When the thermal runaway of pulverized coal occurs, the bituminous pulverized coal slowly heats up to 170 ℃ before 30 min, and a high temperature region appears in the center of the coal layer, and the thermal runaway occurs suddenly at 37 min. When the thermal runaway of bituminous pulverized coal does not occur, the temperature of coal sample becomes stable after 30 min, and the temperature is lower than 150 ℃, without obvious high temperature point. The simulation results are in good agreement with the experimental results in literature 9. Under the condition of thicker bituminous pulverized coal, the minimum ignition temperature of the numerical model is compared with the results of literature 9, and the difference between the two is small, which verifies the reliability of the numerical model. Based on the numerical model, the spontaneous combustion characteristics of bituminous pulverized coal under different oxygen mass fractions are analyzed. ① As the thickness of bituminous pulverized coal increases, the minimum ignition temperature tends to decrease. ② In the thermal runaway stage, the high temperature area is located at the upper part of the pulverized coal center. ③ The temperature rise of pulverized coal in the early stage is caused by the heat transfer of hot plate. With the increase of pulverized coal temperature, the dominant factor of coal oxidation reaction changes from heat to oxygen. ④ The peak value of pulverized coal temperature increases linearly with the oxygen mass fraction, and the ignition delay time decreases exponentially with the oxygen mass fraction. -
表 1 煤样工业分析与元素分析
Table 1. The industrial and elemental analyses of coal sample
% 煤样 工业分析 元素分析 水份 灰份 挥发份 固定碳 碳 氢 氧 氮 烟煤 2.7 14.1 26.9 56.3 67.5 4.26 11.58 1.76 -
[1] 马砺,李超华,武瑞龙,等. 最低点火温度条件下煤粉自燃特性试验研究[J]. 煤炭科学技术,2020,48(2):110-117.MA Li,LI Chaohua,WU Ruilong,et al. Experimental study on spontaneous combustion characteristics of pulverized coal under minimum ignition temperature[J]. Coal Science and Technology,2020,48(2):110-117. [2] 褚廷湘,李品,余明高. 工作面推进下采空区煤自燃进程的动态模拟研究[J]. 中国矿业大学学报,2019,48(3):529-537.CHU Tingxiang,LI Pin,YU Minggao. Dynamic simulation of coal spontaneous combustion in gob under working face advancing[J]. Journal of China University of Mining & Technology,2019,48(3):529-537. [3] 张江石,孙龙浩. 分散度对煤粉爆炸特性的影响[J]. 煤炭学报,2019,44(4):1154-1160.ZHANG Jiangshi,SUN Longhao. Effect of dispersity on explosion characteristics of coal dust[J]. Journal of China Coal Society,2019,44(4):1154-1160. [4] 董子文,吴宪,齐庆杰,等. 风障联合压实防治煤堆自燃技术工艺参数优化[J]. 中国安全生产科学技术,2016,12(3):15-20.DONG Ziwen,WU Xian,QI Qingjie,et al. Parameter optimization on prevention and control technology for spontaneous combustion of coal stockpile by combined method of compaction and wind barrier[J]. Journal of Safety Science and Technology,2016,12(3):15-20. [5] PARK H,RANGWALA A S,DEMBSEY N A. A means to estimate thermal and kinetic parameters of coal dust layer from hot surface ignition tests[J]. Journal of Hazardous Materials,2009,168:145-155. doi: 10.1016/j.jhazmat.2009.02.010 [6] 于志金,文虎,陈晓坤,等. 大型煤自燃试验的火源演化特征模拟[J]. 煤炭科学技术,2017,45(1):89-93.YU Zhijin,WEN Hu,CHEN Xiaokun,et al. Simulation on ignition source evolution features of large scale coal spontaneous combustion experiment[J]. Coal Science and Technology,2017,45(1):89-93. [7] 齐庆杰,王欢,董子文,等. 基于COMSOL软件分析确定煤堆初始自燃区域[J]. 煤炭科学技术,2016,44(10):18-23.QI Qingjie,WANG Huan,DONG Ziwen,et al. Determination on initial coal spontaneous combustion area of coal pile based on COMSOL software[J]. Coal Science and Technology,2016,44(10):18-23. [8] 杨俊义. 氧气体积分数对楔形热板煤自燃特性的影响[J]. 煤炭技术,2021,40(2):107-111.YANG Junyi. Influence of oxygen volume fraction on coal spontaneous combustion on wedge hot plate[J]. Coal Technology,2021,40(2):107-111. [9] WU Dejian,VANIERSCHOT M,VERPLAETSEN F,et al. Numerical study on the ignition behavior of coal dust layers in air and O2/CO2 atmospheres[J]. Applied Thermal Engineering,2016,109:709-717. doi: 10.1016/j.applthermaleng.2016.08.124 [10] 文虎,王文,程小蛟,等. 不同抽采条件对采空区煤自燃“三带”的影响研究[J]. 矿业安全与环保,2020,47(6):1-7.WEN Hu,WANG Wen,CHENG Xiaojiao,et al. Study on the effect of different extraction conditions on "three zones" of coal spontaneous combustion in goaf[J]. Mining Safety & Environmental Protection,2020,47(6):1-7. [11] 刘轶康,牛会永,聂琦苗,等. 高地温矿井采空区煤自燃O2浓度场分布研究[J]. 工矿自动化,2021,47(8):108-114.LIU Yikang,NIU Huiyong,NIE Qimiao,et al. Study on the distribustion of O2 concentration field of coal spontaneous combustion in high ground temperature goaf[J]. Industry and Mine Automation,2021,47(8):108-114. [12] 邸帅,王继仁,郝朝瑜,等. 多场耦合作用下瓦斯与煤自燃协同预防数值模拟[J]. 安全与环境学报,2018,18(2):497-503.DI Shuai,WANG Jiren,HAO Chaoyu,et al. Numerical simulation of synergistic prevention from the gas and coal spontaneous combustion under multifield coupling[J]. Journal of Safety and Environment,2018,18(2):497-503. [13] 刘宝,穆坤,叶飞,等. 基于相关向量机的煤自燃预测方法[J]. 工矿自动化,2020,46(9):104-108.LIU Bao,MU Kun,YE Fei,et al. Prediction method of coal spontaneous combustion based on relevance vector machine[J]. Industry and Mine Automation,2020,46(9):104-108. [14] 邢震. 浅埋厚煤层地表漏风对采空区煤自燃影响数值模拟研究[J]. 工矿自动化,2021,47(2):80-87.XING Zhen. Numerical simulation study on the influence of surface air leakage in shallow thick coal seam on coal spontaneous combustion in goaf[J]. Industry and Mine Automation,2021,47(2):80-87.