留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PSO−SRU深度神经网络的煤自燃温度预测模型

贾澎涛 林开义 郭风景

贾澎涛,林开义,郭风景. 基于PSO−SRU深度神经网络的煤自燃温度预测模型[J]. 工矿自动化,2022,48(4):105-113.  doi: 10.13272/j.issn.1671-251x.2021090047
引用本文: 贾澎涛,林开义,郭风景. 基于PSO−SRU深度神经网络的煤自燃温度预测模型[J]. 工矿自动化,2022,48(4):105-113.  doi: 10.13272/j.issn.1671-251x.2021090047
JIA Pengtao, LIN Kaiyi, GUO Fengjing. A temperature prediction model for coal spontaneous combustion based on PSO-SRU deep artificial neural networks[J]. Journal of Mine Automation,2022,48(4):105-113.  doi: 10.13272/j.issn.1671-251x.2021090047
Citation: JIA Pengtao, LIN Kaiyi, GUO Fengjing. A temperature prediction model for coal spontaneous combustion based on PSO-SRU deep artificial neural networks[J]. Journal of Mine Automation,2022,48(4):105-113.  doi: 10.13272/j.issn.1671-251x.2021090047

基于PSO−SRU深度神经网络的煤自燃温度预测模型

doi: 10.13272/j.issn.1671-251x.2021090047
基金项目: 国家自然科学基金项目(51974236) ; 西安市科技计划项目(2020KJRC0069)。
详细信息
    作者简介:

    贾澎涛(1977-),女,陕西蒲城人,教授,博士,研究方向为机器学习、煤矿灾害预警、智慧矿山等,E-mail:jiapengtao@xust.edu.cn

  • 中图分类号: TD752

A temperature prediction model for coal spontaneous combustion based on PSO-SRU deep artificial neural networks

  • 摘要: 针对传统煤自燃温度预测模型泛化能力不强、鲁棒性较差的问题,提出了一种基于改进粒子群(PSO)优化简单循环单元(SRU)的煤自燃温度预测模型(PSO−SRU模型)。首先,对煤自燃程序升温实验中采集的气体浓度数据进行预处理,选取与煤温相关性较强的O2,CO,CO2,CH4,C2H4作为煤温预测指标,并将预测指标划分为训练集和测试集;其次,构建SRU预测模型拟合训练集中煤自燃温度与气体指标间非线性规律,将平均绝对误差(MAE)作为适应度函数,利用改进的PSO算法优化SRU预测模型参数;最后,将测试集数据输入参数最优的SRU预测模型,利用SRU计算得到煤自燃温度预测值。实验结果表明:通过指标择优和参数寻优后,PSO−SRU模型在测试集上的MAE相较于基于支持向量回归(SVR)、随机森林(RF)和反向传播(BP)的煤自燃温度预测模型分别降低了12.58,7.65,5.91 ℃,表明PSO−SRU模型在一定程度上提高了预测精度;均方根误差(RMSE)分别降低了22.65,17.45,8.94 ℃,PSO−SRU模型在训练集和测试集上的决定系数(R2)仅相差0.03,表明PSO−SRU模型具有良好的泛化性和鲁棒性。

     

  • 图  1  SRU内部结构和网络结构

    Figure  1.  Simple recurrent units(SRU) interior structure and network structure

    图  2  PSO−SRU模型架构

    Figure  2.  Temperature prediction model framework for coal spontaneous combustion based on particle swarm optimization and simple recurrent unit (PSO-SRU)

    图  3  不同气体指标与煤温随时间变化关系

    Figure  3.  Gas indicators and coal temperature as time changes

    图  4  动态的惯性权重

    Figure  4.  Dynamic inertia weight

    图  5  不同隐藏层数SRU预测模型MAE与时间对比

    Figure  5.  Comparison of mean absolute errors(MAE) and running time under various hidden layer of simple recurrent units(SRU) perdiction model

    图  6  PSO算法改进前后适应度变化曲线

    Figure  6.  Fitness value change curves before and after improving particle swarm optimization(PSO) algorithm

    图  7  不同模型测试样本真实煤温与预测煤温对比

    Figure  7.  Comparison of real and predicted temperatures of testing samples using different models

    表  1  温度与气体指标间的相关性

    Table  1.   Correlation between temperature and gas indexes

    名称温度O2COCO2CH4C2H4
    温度1.00−0.740.800.820.810.72
    O2−0.741.00−0.69−0.85−0.72−0.65
    CO0.80−0.691.000.830.680.61
    CO20.82−0.850.831.000.670.60
    CH40.81−0.720.680.671.000.92
    C2H40.72−0.650.610.600.921.00
    下载: 导出CSV

    表  2  不同预测模型的性能预测结果对比

    Table  2.   Comparison of predictions using various models

    模型 MAE/℃ RMSE/℃ R2
    训练集 测试集 训练集 测试集 训练集 测试集
    SVR 17.35 18.01 27.21 31.34 0.86 0.83
    RF 10.81 13.08 14.86 26.14 0.91 0.86
    BP 7.49 11.34 12.51 17.63 0.97 0.89
    POS−SRU 3.15 5.43 6.27 8.69 0.99 0.96
    下载: 导出CSV
  • [1] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949-1960.

    XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949-1960.
    [2] 林柏泉,李庆钊,周延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报,2021,46(6):1715-1726.

    LIN Baiquan,LI Qingzhao,ZHOU Yan. Research advances about multi-field evolution of coupled thermodynamic disaster in coal mine goaf[J]. Journal of China Coal Society,2021,46(6):1715-1726.
    [3] 邓军,白祖锦,肖旸,等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全,2020,51(10):118-125.

    DENG Jun,BAI Zujin,XIAO Yang,et al. Present situation and challenge of coal spontaneous combustion disasters prevention and control technology[J]. Safety in Coal Mines,2020,51(10):118-125.
    [4] 程卫民,张孝强,王刚,等. 综放采空区瓦斯与遗煤自燃耦合灾害危险区域重建技术[J]. 煤炭学报,2016,41(3):662-671.

    CHENG Weimin,ZHANG Xiaoqiang,WANG Gang,et al. Reconstruction technology of gas and coal spontaneous combustion coupled hazard in fully mechanized caving goaf[J]. Journal of China Coal Society,2016,41(3):662-671.
    [5] 张玉涛,李亚清,邓军,等. 煤炭自燃灾变过程突变特性研究[J]. 中国安全科学学报,2015,25(1):78-84.

    ZHANG Yutao,LI Yaqing,DENG Jun,et al. Study on catastrophe characteristics of coal spontaneous combustion[J]. China Safety Science Journal,2015,25(1):78-84.
    [6] 秦波涛,仲晓星,王德明,等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术,2021,49(1):66-99.

    QIN Botao,ZHONG Xiaoxing,WANG Deming,et al. Research progress of coal spontaneous combustion process characteristics and prevention technology[J]. Journal of Coal Science and Technology,2021,49(1):66-99.
    [7] 邓军,徐精彩,陈晓坤. 煤自燃机理及预测理论研究进展[J]. 辽宁工程技术大学学报,2003,22(4):455-459.

    DENG Jun,XU Jingcai,CHEN Xiaokun. Perspectives on spontaneous combustion mechanism and prediction theory of coal[J]. Journal of Liaoning Technical University,2003,22(4):455-459.
    [8] 朱红青,王海燕,王斐然,等. 煤堆测温技术研究进展[J]. 煤炭科学技术,2014,42(1):50-54.

    ZHU Hongqing,WANG Haiyan,WANG Feiran,et al. Research progress on coal stockpile temperature measuring technology[J]. Coal Science and Technology,2014,42(1):50-54.
    [9] 陈欢,杨永亮. 煤自燃预测技术研究现状[J]. 煤矿安全,2013,44(9):194-197.

    CHEN Huan,YANG Yongliang. Research status of predicting coal spontaneous combustion[J]. Safety in Coal Mines,2013,44(9):194-197.
    [10] 李林,陈军朝,姜德义,等. 煤自燃全过程高温区域及指标气体时空变化实验研究[J]. 煤炭学报,2016,41(2):444-450.

    LI Lin,CHEN Junchao,JIANG Deyi,et al. Experimental study on temporal variation of high temperature region and index gas of coal spontaneous combustion[J]. Journal of China Coal Society,2016,41(2):444-450.
    [11] 郝宇,叶正亮. 不同甲烷气氛下煤自燃指标气体及活化能研究[J]. 工矿自动化,2019,45(11):65-69.

    HAO Yu,YE Zhengliang. Research on index gas and activation energy of coal spontaneous combustion under different methane atmosphere[J]. Industry and Mine Automation,2019,45(11):65-69.
    [12] 周冬,刘贞堂,钱继发,等. 采空区内煤自燃气体特征及产生规律分析[J]. 工矿自动化,2019,45(3):18-22.

    ZHOU Dong,LIU Zhengtang,QIAN Jifa,et al. Analysis of gas characteristics and generation rules of coal spontaneous combustion in goaf[J]. Industry and Mine Automation,2019,45(3):18-22.
    [13] 金永飞,郭军,文虎,等. 煤自燃高温贫氧氧化燃烧特性参数的实验研究[J]. 煤炭学报,2015,40(3):596-602.

    JIN Yongfei,GUO Jun,WEN Hu,et al. Experimental study on the high temperature lean oxygen oxidation combustion characteristic parameters of coal spontaneous combustion[J]. Journal of China Coal Society,2015,40(3):596-602.
    [14] 高峰,王文才,李建伟,等. 浅埋煤层群开采复合采空区煤自燃预测[J]. 煤炭学报,2020,45(增刊1):336-345.

    GAO Feng,WANG Wencai,LI Jianwei,et al. Prediction of coal spontaneous combustion in compound gob of shallow seam group mining[J]. Journal of China Coal Society,2020,45(S1):336-345.
    [15] LEI Changkui,DENG Jun,CAO Kai,et al. A random forest approach for predicting coal spontaneous combustion[J]. Fuel,2018,223(1):63-73.
    [16] 邓军,雷昌奎,曹凯,等. 煤自燃预测的支持向量回归方法[J]. 西安科技大学学报,2018,38(2):175-180.

    DENG Jun,LEI Changkui,CAO Kai,et al. Support vector regression approach for predicting coal spontaneous combustion[J]. Journal of Xi'an University of Science and Technology,2018,38(2):175-180.
    [17] 刘宝,穆坤,叶飞,等. 基于相关向量机的煤自燃预测方法[J]. 工矿自动化,2020,46(9):104-108.

    LIU Bao,MU Kun,YE Fei,et al. Prediction method of coal spontaneous combustion based on relevance vector machine[J]. Industry and Mine Automation,2020,46(9):104-108.
    [18] 昝军才,魏成才,蒋可娟,等. 基于BP神经网络的煤自燃温度预测研究[J]. 煤炭工程,2019,51(10):113-117.

    ZAN Juncai,WEI Chengcai,JIANG Kejuan,et al. Prediction of coal spontaneous combustion temperature based on BP neural network[J]. Coal Engineering,2019,51(10):113-117.
    [19] 郑学召,李梦涵,张嬿妮,等. 基于随机森林算法的煤自燃温度预测模型研究[J]. 工矿自动化,2021,47(5):58-64.

    ZHENG Xuezhao,LI Menghan,ZHANG Yanni,et al. Research on the prediction model of coal spontaneous combustion temperature based on random forest algorithm[J]. Industry and Mine Automation,2021,47(5):58-64.
    [20] TAO Lei, YU Zhang, WANG Sidai, et al. Simple recurrent units for highly parallelizable recurrence[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, 2018: 4470-4481.
    [21] KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks, Perth, 1995: 1942-1948.
    [22] 闫群民,马瑞卿,马永翔,等. 一种自适应模拟退火粒子群优化算法[J]. 西安电子科技大学学报,2021,48(4):120-127.

    YAN Qunmin,MA Ruiqing,MA Yongxiang,et al. Adaptive simulated annealing particle swarm optimization algorithm[J]. Journal of Xidian University,2021,48(4):120-127.
    [23] 敖永才,师奕兵,张伟,等. 自适应惯性权重的改进粒子群算法[J]. 电子科技大学学报,2014,43(6):874-880.

    AO Yongcai,SHI Yibing,ZHANG Wei,et al. Improve particle swarm optimization with adaptive inertia weight[J]. Journal of University of Electronic Science and Technology of China,2014,43(6):874-880.
    [24] 汪雅文, 钱谦, 冯勇, 等. 融合吸引排斥和双向学习的改进粒子群算法[J/OL]. 计算机工程与应用: 1-9. [2021-07-20]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210618.0839.002.html.

    WANG Yawen, QIAN Qian, FENG Yong, et al. An improved particle swarm optimization algorithm based on attraction-repulsion and bidirectional learning strategies[J/OL]. Computer Science and Application: 1-9. [2021-07-20]. http://kns.cnki.net/kcms/detail/11.2127.TP.20210618.0839.002.html.
    [25] 姚成玉,赵哲谕,陈东宁,等. 有向动态拓扑混合作用力微粒群优化算法及可靠性应用[J]. 机械工程学报,2017,53(10):166-179. doi: 10.3901/JME.2017.10.166

    YAO Chengyu,ZHAO Zheyu,CHEN Dongning,et al. Unidirectional dynamic topology hybrid force PSO algorithm and its applications in reliability optimization[J]. Journal of Mechanical Engineering,2017,53(10):166-179. doi: 10.3901/JME.2017.10.166
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  97
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 修回日期:  2022-02-24
  • 网络出版日期:  2022-04-13

目录

    /

    返回文章
    返回