Underground power supply system grounding fault section positioning method based on wide-area current transient component
-
摘要: 目前针对煤矿井下供电系统接地故障定位的研究大都采用暂态法,该方法需要同时采集线路的零序电压及零序电流,由于零序电压难以准确采集,在故障区段定位时易将正常运行区段误判为故障运行区段,从而发生越级跳闸现象。而目前针对井下供电系统越级跳闸的保护方案存在不适用于中性点经消弧线圈接地系统、造价较高等问题。针对上述问题,提出了一种基于广域电流暂态分量的井下供电系统接地故障区段定位方法。煤矿井下供电系统发生接地故障时,流经正常线路和故障线路的零序电流方向不同,采用数学形态学中的闭合开度差运算(CODO)提取各个线路的暂态零序电流的方向信息。针对CODO中结构元素长度的选择对于井下供电系统输出结果的好坏起决定性作用,采用粒子群优化(PSO)算法对结构元素长度进行自适应优化,实现接地故障暂态零序电流方向极性特征的可靠提取。基于多级供电系统的拓扑结构,对各条线路上保护元件输出的零序电流暂态分量极性信号进行逻辑运算,当取值为1时,表明该线路为正常运行线路,当取值为0时,表明该线路为故障线路,实现故障区段精确定位。基于中性点不接地系统及中性点经消弧线圈接地系统对该定位方法进行验证,结果表明:基于广域电流暂态分量的井下供电系统接地故障区段定位方法只需要采集零序电流就能在中性点不接地和中性点经消弧线圈接地的运行方式下准确定位故障区段。Abstract: At present, most of the research on underground power supply system grounding fault positioning in coal mine adopts the transient method, which needs to collect zero sequence voltage and zero sequence current of the line at the same time. Because it is difficult to collect zero sequence voltage accurately, it is easy to misjudge the normal operation section as the fault operation section when positioning the fault section, resulting in leapfrog tripping phenomenon. However, the current protection scheme for leapfrog tripping of underground power supply system is not suitable for neutral grounded system through arc suppression coil, and the cost is relatively high. In order to solve those problems, this paper presents an underground power supply system grounding fault section positioning method based on wide-area current transient component. When grounding fault occurs in underground power supply system of coal mine, the direction of zero-sequence current flowing through normal line and fault line is different. The closing opening difference operation (CODO) in mathematical morphology is used to extract the direction information of transient zero-sequence current of each line. The selection of structural element length in COCD plays a decisive role in the output of underground power supply system. The particle swarm optimization (PSO) algorithm is used to adaptively optimize the length of structural element, and the reliable extraction of polarity characteristics of grounding fault transient zero sequence current direction is realized. Based on the topology of multi-level power supply system, the polarity signals of the zero sequence current transient component output by the protection elements on each line are logically calculated. When the value is 1, the line is a normal operation line, and when the value is 0, the line is a fault line. Therefore, the precise positioning of the fault section is realized. Based on the neutral ungrounded system and the neutral grounded system through arc suppression coil, the positioning method is verified. The results show that the underground power supply system grounding fault section positioning method based on wide-area current transient component only needs to collect the zero-sequence current, and the method can achieve accurate positioning of the fault section in the operation mode of the neutral ungrounded and the neutral grounded through the arc suppression coil.
-
表 1 保护元件与出线线路/母线的关系
Table 1. Relationship between protection element and outgoing line / bus line
母线 出线 G1 G2 G3 G4 G5 G6 G7 B1 D1 D2 − − − − − B2 − D2 D3 D4 − − − B3 − − D3 − D5 D6 D7 -
[1] 梁睿,王崇林,辛健. 煤矿电网含并联供电线路的小电流选线[J]. 电力系统保护与控制,2011,39(9):108-113. doi: 10.3969/j.issn.1674-3415.2011.09.020LIANG Rui,WANG Chonglin,XIN Jian. Fault line selection for non-solidly earth network with parallel supply in mine power systems[J]. Power System Protection and Control,2011,39(9):108-113. doi: 10.3969/j.issn.1674-3415.2011.09.020 [2] 房鑫炎,郁惟镛,庄伟. 模糊神经网络在小电流接地系统选线中的应用[J]. 电网技术,2002(5):15-19. doi: 10.3321/j.issn:1000-3673.2002.05.004FANG Xinyan,YU Weiyong,ZHUANG Wei. Application of fuzzy neural networks to grounded line detection in neutral point indirectly grounded power system[J]. Power System Technology,2002(5):15-19. doi: 10.3321/j.issn:1000-3673.2002.05.004 [3] 申坤. 煤矿高压电网防越级跳闸系统研究[D]. 徐州: 中国矿业大学, 2016.SHEN Kun. Research on anti over-ride system for high-voltage power grid of coal mine[D]. Xuzhou: China University of Mining and Technology, 2016. [4] 张利,杨以涵,杨秀媛,等. 移动式比相法配电网接地故障定位研究[J]. 中国电机工程学报,2009,29(7):91-97. doi: 10.3321/j.issn:0258-8013.2009.07.015ZHANG Li,YANG Yihan,YANG Xiuyuan,et al. Method of mobile phase-comparison for fault location of distribution network[J]. Proceedings of the CSEE,2009,29(7):91-97. doi: 10.3321/j.issn:0258-8013.2009.07.015 [5] 黄振强,林品凤. 基于Rogowski线圈的组合接地选线方法[J]. 高压电器,2013,49(3):122-126.HUANG Zhenqiang,LIN Pinfeng. Integrated method of fault line selection based on Rogowski coil[J]. High Voltage Apparatus,2013,49(3):122-126. [6] 张林利,高厚磊,徐丙垠,等. 基于区段零序导纳的小电流接地故障定位方法[J]. 电力系统自动化,2012,36(20):94-98.ZHANG Linli,GAO Houlei,XU Bingyin,et al. Fault location method based on zero-sequence admittance of sections in non-effectively grounded system[J]. Automation of Electric Power Systems,2012,36(20):94-98. [7] 刘漫雨,吕立平,丁冬,等. 基于TDFT非同步采样的首半波法小电流接地故障研究[J]. 电测与仪表,2018,55(23):22-28. doi: 10.3969/j.issn.1001-1390.2018.23.004LIU Manyu,LYU Liping,DING Dong,et al. Study of the small current neutral grounding fault based on TDFT sampling method of first half wave[J]. Electrical Measurement & Instrumentation,2018,55(23):22-28. doi: 10.3969/j.issn.1001-1390.2018.23.004 [8] 刘渝根,王建南,马晋佩,等. 结合小波包变换和5次谐波法的谐振接地系统综合故障选线方法[J]. 高电压技术,2015,41(5):1519-1525.LIU Yugen,WANG Jiannan,MA Jinpei,et al. Comprehensive fault line selection method for resonant grounded system combining wavelet packet transform with fifth harmonic method[J]. High Voltage Engineering,2015,41(5):1519-1525. [9] 李卫国,许文文,乔振宇,等. 基于暂态零序电流凹凸特征的配电网故障区段定位方法[J]. 电力系统保护与控制,2020,48(10):164-173.LI Weiguo,XU Wenwen,QIAO Zhenyu,et al. Fault section location method for a distribution network based on concave and convex characteristics of transient zero sequence current[J]. Power System Protection and Control,2020,48(10):164-173. [10] 陈豪威,王媛媛,唐夏菲,等. 基于S变换暂态能量与方向的无整定配电网选线新方法[J]. 电力系统保护与控制,2018,46(14):71-78. doi: 10.7667/PSPC171058CHEN Haowei,WANG Yuanyuan,TANG Xiafei,et al. A new fault line selection method for distribution network system based on transient energy and direction of S-transformation[J]. Power System Protection and Control,2018,46(14):71-78. doi: 10.7667/PSPC171058 [11] 方毅,薛永端,宋华茂,等. 谐振接地系统高阻接地故障暂态能量分析与选线[J]. 中国电机工程学报,2018,38(19):5636-5645.FANG Yi,XUE Yongduan,SONG Huamao,et al. Transient energy analysis and faulty feeder identification method of high impedance fault in the resonant grounding system[J]. Proceedings of the CSEE,2018,38(19):5636-5645. [12] 束洪春,彭仕欣. 利用全频带综合小波能量相对熵的配网故障选线方法[J]. 高电压技术,2009,35(7):1559-1564.SHU Hongchun,PENG Shixin. Distribution network fault line detection using the full waveband complex relative entropy of wavelet energy[J]. High Voltage Engineering,2009,35(7):1559-1564. [13] 吕艳萍,刘亚东. 应用数学形态学方法分析识别特高压线路雷击干扰[J]. 高电压技术,2010,36(12):2948-2953.LYU Yanping,LIU Yadong. New scheme to identify lightning interference for UHV transmission lines using mathematical morphology[J]. High Voltage Engineering,2010,36(12):2948-2953. [14] 陈仕龙,曹蕊蕊,毕贵红,等. 基于形态学的特高压直流输电线路单端电流方向暂态保护[J]. 电力自动化设备,2016,36(1):67-72.CHEN Shilong,CAO Ruirui,BI Guihong,et al. Single-end current direction transient protection based on morphology for UHVDC transmission line[J]. Electric Power Automation Equipment,2016,36(1):67-72. [15] TRINDADE F C L,FREITAS W,VIEIRA J C M. Fault location in distribution systems based on smart feeder meters[J]. IEEE Transactions on Power Delivery,2014,29(1):251-260. doi: 10.1109/TPWRD.2013.2272057