Research on moving trajectory of intelligent sensor in underground roadway
-
摘要: 针对现有组合惯性导航方式应用于井下巷道内智能传感器时失去完全自主优势和增加成本的问题,首先将井下巷道分解为多个一定垂高的二维平面,在二维平面形成多条既定路径,将智能传感器定位问题转换为既定路径上的移动轨迹跟踪问题;然后选用基于微机电系统的惯性测量单元(MEMS-based IMU)实现井下巷道内智能传感器惯性导航,结合零速修正和既定路径标定的方式反演移动轨迹。智能传感器在既定路径起始点零速修正后,整个既定路径上的移动分为直线惯性导航和交叉点标定2种模式。直线惯性导航:传感器航向角和横滚角变化值不超过阈值时,通过惯性导航组件解算得到传感器速度、位置和姿态角,计算出实时相对坐标和运动路径。交叉点标定:传感器运动到交叉点处时,根据交叉点已知坐标值对当前实时值进行校准,消除惯性导航的累计误差。在地面环形道路的试验结果表明:在未标定情况下,纯惯性导航的航向偏差约为30°,移动距离相对误差为5.5%;进行既定路径交叉点标定后,航向偏差约为2°,移动距离相对误差为0.8%,标定后移动轨迹和实际道路吻合程度更高。Abstract: In order to solve the problem that the existing integrated inertial navigation method loses completely autonomous advantage and increases cost when applied to intelligent sensors in underground roadway, the underground roadways are firstly decomposed into multiple two-dimensional planes with certain vertical height. And multiple established paths are formed in the two-dimensional planes, and the positioning problem of intelligent sensors is converted into the tracking problem of moving tracks on the established paths. Secondly, the inertial measurement unit based on the micro electro-mechanical system (MEMS-based IMU) is used to realize the inertial navigation of the intelligent sensor in the underground roadway, and the moving track is inverted by combining the zero velocity update and the established path calibration. After the zero velocity update of the intelligent sensor at the starting point of the established path, the moving of the whole established path can be divided into two modes, namely linear inertial navigation mode and intersection calibration mode. Linear inertial navigation: when the change values of the heading angle and the roll angle of the sensor do not exceed the threshold value, the speed, the position and the attitude angle of the sensor are calculated through the inertial navigation component, and the real-time relative coordinates and the motion path are calculated. Intersection calibration: when the sensor moves to the intersection, the current real-time value is calibrated according to the known coordinate value of the intersection so as to eliminate the accumulated error of inertial navigation. The results of the test on the ground ring road show that in the context of uncalibrated, the heading deviation of pure inertial navigation is about 30°, and the relative error of moving distance is 5.5%. After the calibration of the established path intersections, the heading deviation is about 2°, and the relative error of the moving distance is 0.8%. After calibration, the moving track is more consistent with the actual road.
-
[1] GB/T 34069—2017物联网总体技术智能传感器特性与分类[S]. GB/T 34069-2017 General technology of Internet of things-characteristic and classification of intelligent sensor[S]. [2] GB/T 33900—2017工业物联网仪表应用属性协议[S]. GB/T 33900-2017 Application attribute protocol for instrument of industrial Internet of things[S]. [3] 王国法,杜毅博,任怀伟,等.智能化煤矿顶层设计研究与实践[J].煤炭学报,2020,45(6):1909-1924.WANG Guofa,DU Yibo,REN Huaiwei,et al.Top level design and practice of smart coal mines[J].Journal of China Coal Society,2020,45(6):1909-1924. [4] 王国法,任怀伟,庞义辉,等.煤矿智能化(初级阶段)技术体系研究与工程进展[J].煤炭科学技术,2020,48(7):1-27.WANG Guofa,REN Huaiwei,PANG Yihui,et al.Research and engineering progress of intelligent coal mine technical system in early stages[J].Coal Science and Technology,2020,48(7):1-27. [5] 张胜利,焦诚,付永恒.室内定位方法和技术综述[J].数字技术与应用,2018,36(10):73-74.ZHANG Shengli,JIAO Cheng,FU Yongheng.Overview of indoor positioning methods and techniques[J].Digital Technology & Application,2018,36(10):73-74. [6] 胡青松,张申,吴立新,等.矿井动目标定位:挑战、现状与趋势[J].煤炭学报,2016,41(5):1059-1068.HU Qingsong,ZHANG Shen,WU Lixin,et al.Localization techniques of mobile objects in coal mines:challenges,solutions and trends[J].Journal of China Coal Society,2016,41(5):1059-1068. [7] 谭建平,林波,刘溯奇,等.基于组合导航的超深矿井提升容器状态监测系统[J].中国惯性技术学报,2016,24(2):185-189.TAN Jianping,LIN Bo,LIU Suqi,et al.Condition monitoring system of ultra-deep mine hoisting container based on integrated navigation[J].Journal of Chinese Inertial Technology,2016,24(2):185-189. [8] 李镇,王海涌,靳宇航,等.一种弹道导弹捷联惯导/地磁组合导航方法[J].中国惯性技术学报,2015,23(5):636-641.LI Zhen,WANG Haiyong,JIN Yuhang,et al.Strapdown inertial/geomagnetic integrated navigation method for ballistic missile[J].Journal of Chinese Inertial Technology,2015,23(5):636-641. [9] 唐宇.基于低成本MEMS的SINS/视觉里程计组合导航系统研究[D].哈尔滨:哈尔滨工程大学,2019.TANG Yu.Research on SINS/visual odometer integrated navigation system based on low cost MEMS[D].Harbin:Harbin Engineering University,2019. [10] 唐相猛.基于MEMS的消防单兵室内定位研究与设计[D].济南:山东大学,2017.TANG Xiangmeng.Research and design of fire fighter indoor location based on MEMS[D].Jinan:Shandong University,2017. [11] 杨洲.基于UWB/MEMS的高精度室内定位技术研究[D].徐州:中国矿业大学,2015.YANG Zhou.Study on high precision indoor positioning technology based on UWB/MEMS[D].Xuzhou:China University of Mining and Technology,2015. [12] 曲国福.基于MEMS技术的捷联惯导系统性能增强技术研究[D].西安:西安理工大学,2010. QU Guofu.The enhancement technology study of the MEMS-based strapdown inertial navigation system[D].Xi'an:Xi'an University of Technology,2010. [13] 万伟.MEMS INS/GNSS组合导航系统研究[D].武汉:武汉大学,2019.WAN Wei.Research on MEMS INS/GNSS integrated navigation system[D].Wuhan:Wuhan University,2019. [14] 孙波,刘冬阳,徐奉,等.基于RSSI的煤矿井下巷道定位技术误差分析[J].煤炭学报,2014,39(增刊2):609-614.SUN Bo,LIU Dongyang,XU Feng,et al.Error analysis of RSSI-based location technology in coal mine[J].Journal of China Coal Society,2014,39(S2):609-614. [15] 于婷,孙伟,文剑.MEMS惯性组件的误差特性分析与标定[J].传感技术学报,2016,29(6):859-864.YU Ting,SUN Wei,WEN Jian.Error analysis and calibration of MEMS inertial components [J].Chinese Journal of Sensors and Actuators,2016,29(6):859-864. [16] 孙伟,闫慧芳,李瑞豹,等.基于惯性技术的端帮采煤机姿态测量仪设计[J].传感技术学报,2016,29(2):306-312.SUN Wei,YAN Huifang,LI Ruibao,et al.The design of attitude determination instrument for end slope coal mining machine based on inertial technology[J].Chinese Journal of Sensors and Actuators,2016,29(2):306-312. [17] 牛小骥,旷俭,陈起金.采用MEMS惯导的小口径管道内检测定位方案可行性研究[J].传感技术学报,2016,29(1):40-44.NIU Xiaoji,KUANG Jian,CHEN Qijin.Study on the posibility of the PIG positioning using MEMS-based IMU[J].Chinese Journal of Sensors and Actuators,2016,29(1):40-44. [18] 唐雷,张哲琛,赵忠华,等.基于误差四元数与Kalman滤波的行人惯导系统设计[J].电子设计工程,2017,25(4):1-4.TANG Lei,ZHANG Zhechen,ZHAO Zhonghua,et al.Design of pedestrian positioning using a quaternion-based indirect Kalman filter[J].Electronic Design Engineering,2017,25(4):1-4. [19] 王琪,汪立新,周小刚,等.混合式惯导系统姿态四元数连续自标定模型[J].北京航空航天大学学报,2019,45(7):1424-1434.WANG Qi,WANG Lixin,ZHOU Xiaogang,et al.Attitude quaternion continuous self-calibration model of hybrid inertial navigation system[J].Journal of Beijing University of Aeronautics and Astronautics,2019,45(7):1424-1434.
点击查看大图
计量
- 文章访问数: 153
- HTML全文浏览量: 12
- PDF下载量: 29
- 被引次数: 0