Coal flow detection method for conveyor belt based on TOF depth image restoration
-
摘要: 传统的带式输送机煤流检测装置中,核子胶带秤存在一定安全和环保隐患,电子胶带秤检测精度易受输送带张力、刚度等因素的影响;而基于超声波、线激光条纹、双目视觉等技术的非接触式检测方法存在实时性差、测量误差较大等问题。提出了一种基于飞行时间(TOF)深度图像修复的输送带煤流检测方法。通过TOF相机获取输送带运煤图像;对TOF图像进行均衡化处理,采用帧差法和边界跟随算法去除背景噪声,获得感兴趣的煤料区域;针对TOF深度图像因边缘处存在飞行像素噪声与多径误差噪声而导致的边缘信息不准确问题,提出强度图像引导的深度图像修复算法,通过Canny边缘检测算法寻找深度图像和强度图像的相似边缘,基于强度图像的有效边缘信息对深度图像边缘处的不可靠数据进行校正,并进一步基于Navier−Stokes方程和中值滤波器得到高精度深度图像;对煤料区域进行像素级分割,并建立煤料体积计算模型,结合输送带速度得出输送带煤流。实验结果表明,该方法的检测误差不超过3.78%,标准差不超过0.491,平均处理时间为83 ms,满足实际生产要求。Abstract: In the traditional belt conveyor coal flow detection device, the nuclear belt scale has certain safety and environmental protection hidden dangers, and the detection precision of electronic belt scale is easily affected by the factors such as belt tension and stiffness. Moreover, non-contact detection methods based on technologies such as ultrasound, linear laser stripes and binocular vision have problems such as poor real-time performance and large measurement errors. A coal flow detection method for conveyor belt based on time-of-flight(TOF) depth image restoration is proposed. The TOF camera is used to obtain the coal conveying image of the conveyor belt. The TOF image is equalized, and the frame difference method and the boundary following algorithm are used to remove the background noise and obtain the coal region of interest. In order to solve the problem of inaccurate edge information caused by flying pixel noise and multi-path error noise at the edge of TOF depth image, the intensity image-guided depth image restoration algorithm is proposed. The Canny edge detection algorithm is used to find similar edges between the depth image and the intensity image. Based on the effective edge information of the intensity image, the unreliable data of the edge of the depth image is corrected. Furthermore, the high-precision depth images are obtained based on Navier-Stokes equation and median filter. The coal area is divided at the pixel level, the coal volume calculation model is established to obtain coal flow of conveyor belt by combining the conveyor belt speed. The experimental results show that the detection error is less than 3.78%, the standard deviation is less than 0.491 and the average processing time is 83 ms, which meets the actual production requirements.
-
Key words:
- belt conveyor /
- coal flow detection /
- TOF camera /
- depth image restoration /
- edge correction
-
表 1 Swift−G TOF相机主要参数
Table 1. Main parameters of Swift-G TOF camera
参数 值 分辨率/像素 $ 640\times 480 $ 工作范围/m 0.5~6 视野范围/(°$\times $°) $ 43°\times 33° $ 照明 内置7个LED @ 850 nm 运行温度/℃ −20~50 最大帧率/(帧·s−1) 44 表 2 煤料体积检测结果
Table 2. Detection results of coal volume
输送带速度/(m·s−1) 实际体积/m3 有深度图像修复 无深度图像修复 检测体积/m3 平均误差/% 标准差 检测体积/m3 平均误差/% 标准差 0.5 0.034 4 0.033 5 2.62 0.399 0.032 8 4.65 1.893 0.068 8 0.067 2 2.33 0.368 0.065 7 4.51 1.842 0.137 7 0.135 0 1.96 0.345 0.131 9 4.21 1.809 1.0 0.034 4 0.033 4 2.91 0.432 0.032 8 4.85 2.215 0.068 8 0.067 1 2.47 0.411 0.065 6 4.65 2.043 0.137 7 0.134 8 2.11 0.382 0.1315 4.50 1.957 1.5 0.034 4 0.033 3 3.20 0.473 0.032 7 5.25 2.776 0.068 8 0.067 0 2.62 0.454 0.065 4 4.94 2.538 0.137 7 0.134 4 2.54 0.425 0.131 3 4.65 2.394 2.0 0.0344 0.0331 3.78 0.491 0.0325 5.73 3.783 0.0688 0.0669 2.76 0.469 0.0650 5.52 3.579 0.1377 0.1340 2.69 0.451 0.1305 5.23 3.342 -
[1] 孙春升, 宋晓波, 弓海军. 煤矿智慧矿山建设策略研究[J]. 煤炭工程,2021,53(2):191-196.SUN Chunsheng, SONG Xiaobo, GONG Haijun. Construction strategy of intelligent coal mine[J]. Coal Engineering,2021,53(2):191-196. [2] HE Daijie, PANG Yusong, LODEWIJKS G. Green operations of belt conveyors by means of speed control[J]. Applied Energy,2017,188:330-341. doi: 10.1016/j.apenergy.2016.12.017 [3] 任凤国, 刘学红, 任安祥, 等. 提高矿用X射线核子秤计量稳定性的研究[J]. 工矿自动化,2018,44(8):24-27.REN Fengguo, LIU Xuehong, REN Anxiang, et al. Research on improving measurement stability of mine-used X-ray nuclear scale[J]. Industry and Mine Automation,2018,44(8):24-27. [4] GAN Hong, CHEN Kun, ZHONG Xinghong. Static analysis on the measurement system of an electronic belt scale[J]. Applied Mechanics and Materials,2013,345:525-529. doi: 10.4028/www.scientific.net/AMM.345.525 [5] MIHUT N M. Designing a system for measuring the flow of material transported on belts using ultrasonic sensors[J]. IOP Conference Series:Materials Science and Engineering,2015,95:012089. doi: 10.1088/1757-899X/95/1/012089 [6] 李萍, 任安祥. 基于机器视觉的带送煤炭体积测量方法研究[J]. 工矿自动化,2018,44(4):24-29.LI Ping, REN Anxiang. Research on volume measurement method of coal on belt conveying based on machine vision[J]. Industry and Mine Automation,2018,44(4):24-29. [7] 代伟, 赵杰, 杨春雨, 等. 基于双目视觉深度感知的带式输送机煤量检测方法[J]. 煤炭学报,2017,42(增刊2):547-555.DAI Wei, ZHAO Jie, YANG Chunyu, et al. Detection method of coal quantity in belt conveyor based on binocular vision depth perception[J]. Journal of China Coal Society,2017,42(S2):547-555. [8] LANGE R, SEITZ P. Solid-state time-of-flight range camera[J]. IEEE Journal of Quantum Electronics,2001,37(3):390-397. doi: 10.1109/3.910448 [9] HORAUD R, HANSARD M, EVANGELIDIS G. An overview of depth cameras and range scanners based on time-of-flight technologies[J]. Machine Vision and Applications,2016,27(7):1005-1020. doi: 10.1007/s00138-016-0784-4 [10] HANSARD M, LEE S, CHOI O, et al. Time-of-flight cameras: principles, methods and applications[M]. Berlin: Springer, 2013. [11] 孙哲, 张勇, 常衢通. 基于置信度的TOF与双目系统深度数据融合[J]. 北京航空航天大学学报,2018,44(8):1764-1771.SUN Zhe, ZHANG Yong, CHANG Qutong. In-depth data fusion of TOF and stereo vision system based on confidence level[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(8):1764-1771. [12] REMONDINO F, STOPPA D. 飞行时间测距成像相机[M]. 北京: 国防工业出版社, 2013.REMONDINO F, STOPPA D. Time-of-flight ranging imaging camera[M]. Beijing: National Defense Industry Press, 2013. [13] JIMéNEZ D, PIZARRO D, MAZO M, et al. Modeling and correction of multipath interference in time of flight cameras[J]. Image and Vision Computing,2014,32(1):1-13. doi: 10.1016/j.imavis.2013.10.008 [14] KNOLL F, BREDIES K, POCK T, et al. Second order total generalized variation(TGV) for MRI[J]. Magnetic Resonance in Medicine,2011,65(2):480-491. doi: 10.1002/mrm.22595 [15] 刘娇丽, 李素梅, 李永达, 等. 基于TOF与立体匹配相融合的高分辨率深度获取[J]. 信息技术,2016(12):190-193.LIU Jiaoli, LI Sumei, LI Yongda, et al. High-resolution depth maps based on TOF-stereo fusion[J]. Information Technology,2016(12):190-193. [16] JUNG J, LEE J, JEONG Y, et al. Time-of-flight sensor calibration for a color and depth camera pair[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(7):1501-1513. doi: 10.1109/TPAMI.2014.2363827