留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤与瓦斯突出危险性预测

李燕 南新元 蔺万科

李燕,南新元,蔺万科. 煤与瓦斯突出危险性预测[J]. 工矿自动化,2022,48(3):99-106.  doi: 10.13272/j.issn.1671-251x.2021070072
引用本文: 李燕,南新元,蔺万科. 煤与瓦斯突出危险性预测[J]. 工矿自动化,2022,48(3):99-106.  doi: 10.13272/j.issn.1671-251x.2021070072
LI Yan, NAN Xinyuan, LIN Wanke. Risk prediction of coal and gas outburst[J]. Journal of Mine Automation,2022,48(3):99-106.  doi: 10.13272/j.issn.1671-251x.2021070072
Citation: LI Yan, NAN Xinyuan, LIN Wanke. Risk prediction of coal and gas outburst[J]. Journal of Mine Automation,2022,48(3):99-106.  doi: 10.13272/j.issn.1671-251x.2021070072

煤与瓦斯突出危险性预测

doi: 10.13272/j.issn.1671-251x.2021070072
基金项目: 新疆维吾尔自治区自然科学基金项目(2019D01C079)。
详细信息
    作者简介:

    李燕(1996−),女,新疆伊犁人,硕士研究生,主要研究方向为信息融合技术,E-mail:yan_li_niyani@163.com

    通讯作者:

    南新元(1967−),男,新疆乌鲁木齐人,教授,硕士,硕士研究生导师,主要研究方向为流程工业系统控制与优化,E-mail:xynan@xju.edu.cn

  • 中图分类号: TD713

Risk prediction of coal and gas outburst

  • 摘要: 针对现有基于支持向量机(SVM)的煤与瓦斯突出预测方法存在准确率低与响应速度慢的问题,提出了一种基于改进灰狼算法(IGWO)优化SVM的煤与瓦斯突出危险性预测方法。采用灰色关联熵权法分析各个影响因素对煤与瓦斯突出的影响程度,根据关联度排序提取瓦斯压力、瓦斯含量、瓦斯放散初速度和开采深度作为煤与瓦斯突出主控因素,将其分为训练集和测试集,并进行归一化处理;为改善传统灰狼算法(GWO)种群易陷入局部最优和寻优速度慢的缺陷,引入越界处理机制和嵌入莱维飞行的随机差分变异策略对GWO算法进行改进(即IGWO),有效提升了GWO的收敛精度与速度;采用IGWO对SVM的核心参数和惩罚参数进行优化,将煤与瓦斯突出的主控因素输入到IGWO−SVM中进行分类,并将其与实际测试集分类结果进行对比,实现煤与瓦斯突出危险性预测。仿真结果表明:与基于鲸鱼算法−支持向量机(WOA−SVM)、灰狼算法−支持向量机(GWO−SVM)和粒子群−支持向量机(PSO−SVM)的预测方法相比,基于IGWO−SVM的预测方法具有更高的预测精度,在提高SVM运算效率的同时满足煤与瓦斯突出预测的精度和可靠性要求,准确率达到96.67%,预测速度为5.58 s。

     

  • 图  1  Sphere函数优化曲线

    Figure  1.  Sphere function optimization curves

    图  2  Griewank函数优化曲线

    Figure  2.  Griewank function optimization curves

    图  3  IGWO−SVM预测流程

    Figure  3.  Prediction process of IGWO-SVM

    图  4  GWO−SVM预测结果

    Figure  4.  Prediction result of GWO-SVM

    图  7  PSO−SVM预测结果

    Figure  7.  Prediction result of PSO-SVM

    图  5  IGWO−SVM预测结果

    Figure  5.  Prediction result of IGWO-SVM

    图  6  WOA−SVM预测结果

    Figure  6.  Prediction result of WOA-SVM

    图  8  4种算法预测时间对比

    Figure  8.  Comparison of prediction time of four algorithms

    表  1  部分样本数据

    Table  1.   Part of sample data

    序号G1/MPa${G_2}/({{\rm{m}}^3} \cdot {{\rm{t}}^{ - 1} })$G3/mmHgG4G5G6/m突出危险性
    10.4519.63918.4070.491556.8841
    20.4619.13118.0390.499535.3762
    30.73012.23018.4850.463546.1801
    42.30217.36618.9180.381557.0503
    50.6709.69012.8360.582499.9712
    860.7979.79717.0780.488482.8691
    871.28212.0959.0790.612613.9582
    881.18712.29118.7030.408605.0292
    890.80612.14819.9090.498565.6452
    902.19716.77619.0190.378556.1553
    下载: 导出CSV

    表  2  灰色关联度

    Table  2.   Grey relation degree

    影响因素平均灰色关联度加权灰色关联度关联度顺序
    G10.709 30.149 13
    G20.673 20.138 54
    G30.711 50.150 62
    G40.620 90.119 46
    G50.654 40.130 65
    G60.714 20.152 91
    下载: 导出CSV
  • [1] 李长兴,关金锋,李回贵,等. 煤与瓦斯突出预测的Bayes−逐步判别分析模型及应用[J]. 中国矿业,2020,29(2):117-123.

    LI Changxing,GUAN Jinfeng,LI Huigui,et al. Bayes stepwise discriminant analysis model and application of coal and gas outburst prediction[J]. China Mining Magazine,2020,29(2):117-123.
    [2] 舒龙勇,王凯,齐庆新,等. 煤与瓦斯突出关键结构体致灾机制[J]. 岩石力学与工程学报,2017,36(2):347-356.

    SHU Longyong,WANG Kai,QI Qingxin,et al. Key structural body theory of coal and gas outburst[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(2):347-356.
    [3] 付华,丰胜成,高振彪,等. 基于双耦合算法的煤与瓦斯突出预测模型[J]. 中国安全科学学报,2018,28(3):84-89.

    FU Hua,FENG Shengcheng,GAO Zhenbiao,et al. Study on double coupling algorithm based model for coal and gas outburst prediction[J]. China Safety Science Journal,2018,28(3):84-89.
    [4] LIU Haibo,DONG Yujie,WANG Fuzhong,et al. Gas outburst prediction model using improved entropy weight grey correlation analysis and IPSO-LSSVM[J]. Mathematical Problems in Engineering,2020,152:63-72.
    [5] WU Yaqin,GAO Ronglei,YANG Jinzhen. Prediction of coal and gas outburst: a method based on the BP neural network optimized by GASA[J]. Process Safety and Environmental Protection,2019,133:64-72.
    [6] 郑晓亮,来文豪,薛生. MI和SVM算法在煤与瓦斯突出预测中的应用[J]. 中国安全科学学报,2021,31(1):75-80.

    ZHENG Xiaoliang,LAI Wenhao,XUE Sheng. Application of MI and SVM in coal and gas outburst prediction[J]. China Safety Science Journal,2021,31(1):75-80.
    [7] 韩永亮,李胜,胡海永,等. 基于改进的GA−ELM煤与瓦斯突出预测模型[J]. 地下空间与工程学报,2019,15(6):1895-1902.

    HAN Yongliang,LI Sheng,HU Haiyong,et al. Prediction model of coal and gas outburst based on optimized GA-ELM[J]. Chinese Journal of Underground Space and Engineering,2019,15(6):1895-1902.
    [8] 温廷新,于凤娥,邵良杉. 基于灰色关联熵的煤与瓦斯突出概率神经网络预测模型[J]. 计算机应用研究,2018,35(11):3326-3329.

    WEN Tingxin,YU Feng'e,SHAO Liangshan. Probabilistic neural network prediction model of coal and gas outburst based on grey relational entropy[J]. Application Research of Computers,2018,35(11):3326-3329.
    [9] 吴雅琴,李惠君,徐丹妮. 基于IPSO−Powell优化SVM的煤与瓦斯突出预测算法[J]. 工矿自动化,2020,46(4):46-53.

    WU Yaqin,LI Huijun,XU Danni. Prediction algorithm of coal and gas outburst based on IPSO-Powell optimized SVM[J]. Industry and Mine Automation,2020,46(4):46-53.
    [10] BIAN Xiaoqiang,ZHANG Qian,ZHANG Lu,et al. A grey wolf optimizer-based support vector machine for the solubility of aromatic compounds in supercritical carbon dioxide[J]. Chemical Engineering Research and Design,2017,123:284-294. doi: 10.1016/j.cherd.2017.05.008
    [11] 冯璋,裴东,王维. 基于改进灰狼算法优化支持向量机的人脸识别[J]. 计算机工程与科学,2019,41(6):1057-1063.

    FENG Zhang,PEI Dong,WANG Wei. Face recognition by support vector machine optimized by an improved grey wolf algorithm[J]. Computer Engineering & Science,2019,41(6):1057-1063.
    [12] 陈闯,RYAD Chellali,邢尹. 改进GWO优化SVM的语音情感识别研究[J]. 计算机工程与应用,2018,54(16):113-118.

    CHEN Chuang,RYAD Chellali,XING Yin. Research on speech emotion recognition based on improved GWO optimization SVM[J]. Computer Engineering and Applications,2018,54(16):113-118.
    [13] 王志华,罗齐,刘绍廷. 基于混沌灰狼优化算法的SVM分类器研究[J]. 计算机工程与科学,2018,40(11):2040-2046.

    WANG Zhihua,LUO Qi,LIU Shaoting. A SVM classifier based on chaotic gray wolf optimization algorithm[J]. Computer Engineering & Science,2018,40(11):2040-2046.
    [14] 郑直,张华钦,潘月. 基于改进鲸鱼算法优化LSTM的滚动轴承故障诊断[J]. 振动与冲击,2021,40(7):274-280.

    ZHENG Zhi,ZHANG Huaqin,PAN Yue. Rolling bearing fault diagnosis based on IWOA-LSTM[J]. Journal of Vibration and Shock,2021,40(7):274-280.
    [15] LIU Haibo,DONG Yujie,WANG Fuzhong. Gas outburst prediction model using rough set and support vector machine[J]. Evolutionary Intelligence,2020,7:1-9.
    [16] ZHANG Chaolin,WANG Enyuan,XU Jiang,et al. A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal[J]. Fuel,2021,287:1-10.
    [17] 李冬,彭苏萍,杜文凤,等. 煤层瓦斯突出危险区综合预测方法[J]. 煤炭学报,2018,43(2):466-472.

    LI Dong,PENG Suping,DU Wenfeng,et al. Comprehensive prediction method of coal seam gas outburst danger zone[J]. Journal of China Coal Society,2018,43(2):466-472.
    [18] 陈恋,袁梅,高强,等. 主成分−费歇尔判别模型在煤与瓦斯突出等级预测中的应用[J]. 工矿自动化,2020,46(3):55-62.

    CHEN Lian,YUAN Mei,GAO Qiang,et al. Application of principal component-Fisher discrimination model in grade prediction of coal and gas outburst[J]. Industry and Mine Automation,2020,46(3):55-62.
    [19] 李映洁. 多源信息融合技术在煤与瓦斯突出预测中的应用研究[D]. 徐州: 中国矿业大学, 2018.

    LI Yingjie. Study on the application of multi-source information fusion technology in the coal and gas outburst prediction[D]. Xuzhou: China University of Mining and Technology, 2018.
    [20] 李杰. 煤与瓦斯突出IGSA−SVM预测模型及其应用[D]. 太原: 太原理工大学, 2016.

    LI Jie. Coal and gas outburst IGSA-SVM prediction model and its application[D]. Taiyuan: Taiyuan University of Technology, 2016.
    [21] 朱政江. 基于神经网络和粒子群优化SVM的煤与瓦斯突出预测模型研究[D]. 太原: 太原理工大学, 2014.

    ZHU Zhengjiang. Research of coal and gas outburst prediction models based on neural network and PSO-SVM [D]. Taiyuan: Taiyuan University of Technology, 2014.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  112
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2022-01-21
  • 网络出版日期:  2022-03-05

目录

    /

    返回文章
    返回