留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GRU和XGBoost的矿压显现规律预测

柴敬 刘义龙 王安义 屈世甲 欧阳一博

柴敬,刘义龙,王安义,等. 基于GRU和XGBoost的矿压显现规律预测[J]. 工矿自动化,2022,48(1):89-95.  doi: 10.13272/j.issn.1671-251x.2021070062
引用本文: 柴敬,刘义龙,王安义,等. 基于GRU和XGBoost的矿压显现规律预测[J]. 工矿自动化,2022,48(1):89-95.  doi: 10.13272/j.issn.1671-251x.2021070062
CHAI Jing, LIU Yilong, WANG Anyi, et al. Prediction of strata behaviors law based on GRU and XGBoost[J]. Industry and Mine Automation,2022,48(1):89-95.  doi: 10.13272/j.issn.1671-251x.2021070062
Citation: CHAI Jing, LIU Yilong, WANG Anyi, et al. Prediction of strata behaviors law based on GRU and XGBoost[J]. Industry and Mine Automation,2022,48(1):89-95.  doi: 10.13272/j.issn.1671-251x.2021070062

基于GRU和XGBoost的矿压显现规律预测

doi: 10.13272/j.issn.1671-251x.2021070062
基金项目: 国家重点研发计划项目(2018YFC0808301);国家自然科学基金资助项目(51804244)。
详细信息
    作者简介:

    柴敬(1964—),男,宁夏平罗人,教授,博士研究生导师,主要从事采矿工程、实验岩石力学及光纤传感方面的研究工作,E-mail: chaij@xust.edu.cn

  • 中图分类号: TD323

Prediction of strata behaviors law based on GRU and XGBoost

  • 摘要: 采用光纤传感器监测的光纤频移值对矿压显现规律进行表征的过程中,传感器采集的数据存在缺失现象,无法准确预测矿压显现规律。针对该问题,以千秋煤矿为工程背景,在假设光纤下半部分数据丢失的前提下,引入GRU(门控循环单元)和LSTM(长短期记忆网络)2种预测模型,对缺失的光纤频移值进行对比预测,得出GRU模型的收敛速度优于LSTM模型的收敛速度,说明基于GRU模型的缺失值处理方法较优。将原始完整的光纤频移值转换为可表征矿压显现位置的光纤平均频移变化度,引入XGBoost(极端梯度提升)模型和BP神经网络模型进行对比预测,XGBoost模型能准确预测出测试集中所有出现“尖峰”的位置,而BP神经网络模型只预测出2处“尖峰”位置,说明XGBoost模型的预测效果优于BP神经网络模型的预测效果。将预测出的光纤频移缺失值替换至缺失位置,形成“完整”光纤频移值数据,将该数据转换为光纤平均频移变化度后,采用XGBoost模型进行预测。验证结果表明:LSTM模型及GRU模型均可准确预测出光纤下半部分的数据,且GRU模型准确性较LSTM模型准确性高;使用XGBoost可准确预测出测试集中出现的周期来压;通过GRU模型预测出的缺失数据经整合至缺失位置后,使用XGBoost模型仍可进行有效的矿压预测。

     

  • 图  1  三维相似物理模型

    Figure  1.  3D similar physical model

    图  2  光纤监测系统

    Figure  2.  Optical fiber monitoring system

    图  3  GRU网络结构

    Figure  3.  GRU network topology

    图  4  LSTM模型损失函数

    Figure  4.  LSTM model loss function

    图  5  GRU模型损失函数

    Figure  5.  GRU model loss function

    图  6  LSTM和GRU模型的预测结果

    Figure  6.  The prediction results of LSTM and GRU models

    图  7  光纤预测数据整合

    Figure  7.  The optical fiber prediction data integration

    图  8  光纤原始频移数据

    Figure  8.  The optical fiber raw frequency shift data

    图  9  Fv1光纤平均频移变化度曲线

    Figure  9.  The average frequency shift curve of Fv1 optical fiber

    图  10  XGBoost模型和BP神经网络模型的预测结果

    Figure  10.  Prediction results of XGBoost model and BP neural network model

    图  11  替换数据预测

    Figure  11.  Replacement data prediction

    表  1  覆岩结构及物理力学参数

    Table  1.   Rock structure and physical and mechanical parameters

    序号名称岩层厚
    度/m
    抗压强
    度/MPa
    抗拉强
    度/MPa
    弹性模量/
    103 MPa
    岩层容重/
    (t̩·m−3
    15 黏土 15.0 15.0 1.5 5.0 1.6
    14 泥灰岩 5.0 15.0 1.5 5.0 1.6
    13 砾岩 65.0 35.0 5.5 32.0 1.8
    12 细砂岩 85.0 30.0 4.0 28.0 1.6
    11 砾岩 250.0 75.0 5.5 32.0 1.7
    10 破碎带 1.0 40.0 4.0 28.0 1.7
    9 砾岩 160.0 75.0 5.5 32.0 1.8
    8 泥岩 50.0 50.0 1.2 5.0 1.9
    7 细砂岩 40.0 40.0 9.0 35.0 1.6
    6 粉砂岩 70.0 45.0 4.0 28.0 1.7
    5 细砂岩 25.0 40.0 9.0 31.0 1.6
    4 泥岩 25.0 50.0 1.2 5.0 1.9
    3 2号煤 15.0 16.0 0.6 3.5 0.9
    2 砾岩 8.0 65.0 5.5 32.0 1.8
    1 泥岩 72.0 50.0 1.2 5.0 1.9
    下载: 导出CSV
  • [1] 何满潮, 马新根, 王炯, 等. 中厚煤层复合顶板切顶卸压自动成巷工作面矿显现特征分析[J]. 岩石力学与工程学报,2018,37(11):2425-2434.

    HE Manchao, MA Xingen, WANG Jiong, et al. Feature analysis of working face strata pressure with roof cutting pressure releasing in medium-thick seam and compound roof condition[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(11):2425-2434.
    [2] 高瑞.远场坚硬岩层破断失稳的矿压作用机理及地面压裂控制研究[D].徐州:中国矿业大学,2018.

    GAO Rui.The mechanism of ground pressure induced by the breakage of far-field hard strata and the control technology of ground fracturing[D].Xuzhou:China University of Mining and Technology,2018.
    [3] 张朔滕. 基于光纤传感的矿压在线监测系统在阳煤五矿的应用研究[D]. 徐州: 中国矿业大学, 2019.

    ZHANG Shuoteng. Application of on-line monitoring system of mine pressure based on optical fiber sensing in Yangquan No. 5 Coal Mine[D]. Xuzhou: China University of Mining and Technology, 2019.
    [4] 袁应吉, 刘洪洋, 吴文飞. 光纤光栅传感技术在煤矿安全监测中的应用[J]. 科学技术创新,2019(36):159-160.

    YUAN Yingji, LIU Hongyang, WU Wenfei. Application of fiber grating sensing technology in coal mine safety monitoring[J]. Scientific and Technological Innovation,2019(36):159-160.
    [5] 杜文刚. 基于光纤感测的采动覆岩变形演化特征试验研究[D]. 西安: 西安科技大学, 2020.

    DU Wengang. Experimental study on deformation evolution characteristics of mining rock based on optical fiber sensing [D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [6] 王润沛. 基于机器学习的分布式光纤监测覆岩变形矿压预测研究[D]. 西安: 西安科技大学, 2020.

    WANG Runpei. Study on the prediction of deformation and rock pressure of overburden monitored by distributed optical fiber based on machine learning[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [7] 巩师鑫, 任怀伟, 杜毅博, 等. 基于MRDA−FLPEM集成算法的综采工作面矿压迁移预测[J]. 煤炭学报,2021,46(增刊1):529-538.

    GONG Shixin, REN Huaiwei, DU Yibo, et al. Transfer prediction of underground pressure for fully mechanized mining face based on MRDA-FLPEM integrated algorithm[J]. Journal of China Coal Society,2021,46(S1):529-538.
    [8] 赵毅鑫, 杨志良, 马斌杰, 等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(1):54-65.

    ZHAO Yixin, YANG Zhiliang, MA Binjie, et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society,2020,45(1):54-65.
    [9] 常峰. 基于GA−BP神经网络的工作面顶板矿压预测模型应用研究[D]. 徐州: 中国矿业大学, 2019.

    CHANG Feng. Application research of the prediction model for the coal working face roof pressure based on GA-BP neural networks[D]. Xuzhou: China University of Mining and Technology, 2019.
    [10] 李泽萌. 基于LSTM的采煤工作面矿压预测方法研究[D]. 西安: 西安科技大学, 2020.

    LI Zemeng. Research on prediction method of mining pressure in coal face based on LSTM[D]. Xi'an: Xi'an University of Science and Technology, 2020.
    [11] 赵铭生, 刘守强, 纪润清, 等. 基于遗传算法优化BP神经网络的华北型煤田矿压破坏带深度预测[J]. 矿业研究与开发,2020,40(6):89-93.

    ZHAO Mingsheng, LIU Shouqiang, JI Runqing, et al. Depth prediction of mining pressure failure zone in North China coalfield based on BP neural network optimized by genetic algorithm[J]. Mining Research and Development,2020,40(6):89-93.
    [12] LUO Junling, ZHANG Zhongliang, FU Yao, et al. Time series prediction of COVID-19 transmission in America using LSTM and XGBoost algorithms[J]. Results in Physics,2021,27(3):104462-104471.
    [13] 袁强. 采动覆岩变形的分布式光纤检测与表征模拟试验研究[D]. 西安: 西安科技大学, 2017.

    YUAN Qiang. Experimental study on distributed and representation of mining-induced overburden deformation with distributed optical fiber sensing[D]. Xi'an: Xi'an University of Science and Technology, 2017.
    [14] 柴敬, 魏世明. 相似材料中光纤传感检测特性分析[J]. 中国矿业大学学报,2007,36(4):458-462. doi: 10.3321/j.issn:1000-1964.2007.04.008

    CHAI Jing, WEI Shiming. Transmission character analysis of fiber optical sensing in similar material of simulation experiments[J]. Journal of China University of Mining & Technology,2007,36(4):458-462. doi: 10.3321/j.issn:1000-1964.2007.04.008
    [15] 柴敬, 霍晓斌, 钱云云, 等. 采场覆岩变形和来压判别的分布式光纤监测模型试验[J]. 煤炭学报,2018,43(增刊1):36-43.

    CHAI Jing, HUO Xiaobin, QIAN Yunyun, et al. Model test for evaluating deformation and weighting of overlying strata by distributed optical fiber sensing[J]. Journal of China Coal Society,2018,43(S1):36-43.
    [16] 朱磊. 基于光纤频移变化度的采动覆岩变形表征试验研究[D]. 西安: 西安科技大学, 2018.

    ZHU Lei. Experimental research on overburden deformation characterized by fiber frequency shift variation degree[D]. Xi'an: Xi'an University of Science and Technology, 2018.
    [17] TAKENS F. On the numerical determination of the dimension of an attractor[J]. Dynamical Systems and Bifrucations,1985,898:99-106.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  36
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2022-01-06
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回