留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤层原生CO钻孔探测试验

秦汝祥 徐少伟 侯树宏 田文雄 杨志华 傅师贵

秦汝祥,徐少伟,侯树宏,等. 煤层原生CO钻孔探测试验[J]. 工矿自动化,2022,48(1):21-25.  doi: 10.13272/j.issn.1671-251x.2021070043
引用本文: 秦汝祥,徐少伟,侯树宏,等. 煤层原生CO钻孔探测试验[J]. 工矿自动化,2022,48(1):21-25.  doi: 10.13272/j.issn.1671-251x.2021070043
QIN Ruxiang, XU Shaowei, HOU Shuhong, et al. Borehole detection test of primary CO in coal seam[J]. Industry and Mine Automation,2022,48(1):21-25.  doi: 10.13272/j.issn.1671-251x.2021070043
Citation: QIN Ruxiang, XU Shaowei, HOU Shuhong, et al. Borehole detection test of primary CO in coal seam[J]. Industry and Mine Automation,2022,48(1):21-25.  doi: 10.13272/j.issn.1671-251x.2021070043

煤层原生CO钻孔探测试验

doi: 10.13272/j.issn.1671-251x.2021070043
基金项目: 国家自然科学基金资助项目(51874007)。
详细信息
    作者简介:

    秦汝祥(1975—),男,江苏高邮人,教授,主要从事矿井通风防灭火技术研究工作,E-mail:309374919@qq.com

  • 中图分类号: TD711.4

Borehole detection test of primary CO in coal seam

  • 摘要: 当前不少研究均得出煤层赋存原生CO气体的结论,但是未考虑钻孔施工过程中产生CO后被煤体吸附的可能。为探究西北地区易自燃煤层是否存在原生CO的问题,采用原始煤层原位钻孔探测方法进行原生CO探测试验。在未受采动影响的实体煤区域沿巷帮一字排开布置3个测试钻孔,钻孔密封后采用高纯N2置换密闭气室内气体,采用专用抽气泵抽取钻孔内气体,消除原位探测钻孔施工过程中煤体氧化产生CO对试验结果的影响。在分析煤层原生CO来源可能性及其涌出理论的基础上,探讨了密闭钻孔内气体浓度随时间变化特征,结果表明:密封后钻孔内O2和CO体积分数随密封时间的延长而迅速降低,12 d后O2体积分数稳定在2%以下;12 d后CO体积分数低于10−12,气相色谱仪未检测到CO气体;钻孔内气体主要为N2。由此推断,待测煤层中无原生CO气体。N2环境破煤试验和煤样常温恒温氧化试验结果表明,封孔初期检出的CO气体来源于钻孔施工破煤作业。

     

  • 图  1  原生CO探测钻孔

    Figure  1.  Primary CO detection boreholes

    图  2  原生CO探测钻孔结构

    Figure  2.  Structure of primary CO detection boreholes

    图  3  探测钻孔密封与气样采集

    Figure  3.  Detection borehole sealing and gas sample collection

    图  4  探测钻孔气室内气体体积分数变化曲线

    Figure  4.  Variation curves of gas volume fraction in gas chamber of detection borehole

    图  5  煤样常温氧化产生的CO体积分数变化曲线

    Figure  5.  Variation curve of CO volume fraction produced by normal temperature oxidation of coal samples

    图  6  煤样不同气氛下破碎产生的CO体积分数变化曲线

    Figure  6.  Variation curves of CO volume fraction produced by crushing coal samples under different atmospheres

  • [1] 邓军, 李青蔚, 肖旸, 等. 原煤和氧化煤的低温氧化特性[J]. 西安科技大学学报,2018,38(1):1-7.

    DENG Jun, LI Qingwei, XIAO Yang, et al. Characteristics of low-temperature oxidation of raw and oxidized coals[J]. Journal of Xi'an University of Science and Technology,2018,38(1):1-7.
    [2] 朱令起, 周心权, 谢建国, 等. 自然发火标志气体实验分析及优化选择[J]. 采矿与安全工程学报,2008,25(4):440-443. doi: 10.3969/j.issn.1673-3363.2008.04.013

    ZHU Lingqi, ZHOU Xinquan, XIE Jianguo, et al. Analysis of indicator gas of spontaneous combustion and its optimal selection[J]. Journal of Mining & Safety Engineering,2008,25(4):440-443. doi: 10.3969/j.issn.1673-3363.2008.04.013
    [3] 杨鹏, 庄恒超. 西川煤矿工作面上隅角CO来源分析研究[J]. 煤炭工程,2018,50(1):100-104. doi: 10.11799/ce201801028

    YANG Peng, ZHUANG Hengchao. Source analysis of CO in working face upper corner of Xichuan Coal Mine[J]. Coal Engineering,2018,50(1):100-104. doi: 10.11799/ce201801028
    [4] 贾海林, 韩璐璐, 余明高. 煤结构机械破断生成S−CO的规律与机理[J]. 煤炭学报,2017,42(8):2037-2043.

    JIA Hailin, HAN Lulu, YU Minggao. Formation rule and mechanism of S-CO during the mechanical disruption of coal structure[J]. Journal of China Coal Society,2017,42(8):2037-2043.
    [5] 戴广龙. 煤低温氧化过程中自由基浓度与气体产物之间的关系[J]. 煤炭学报,2012,37(1):122-126.

    DAI Guanglong. Relation between free radicals concentration and gas products in process of coal low temperature oxidation[J]. Journal of China Coal Society,2012,37(1):122-126.
    [6] 贾海林, 余明高, 徐永亮. 矿井CO气体成因类型及机理辨识分析[J]. 煤炭学报,2013,38(10):1812-1818.

    JIA Hailin, YU Minggao, XU Yongliang. Analysis on the genetic type and mechanism identification of carbon monoxide in the coal mine[J]. Journal of China Coal Society,2013,38(10):1812-1818.
    [7] 邬剑明, 郭惠宇, 宋金旺, 等. 解吸法测定塔山矿煤层原生CO含量的试验研究[J]. 煤炭科学技术,2010,38(6):54-56.

    WU Jianming, GUO Huiyu, SONG Jinwang, et al. Experiment study on desorption method to measure in-situ CO content of seam in Tashan Mine[J]. Coal Science and Technology,2010,38(6):54-56.
    [8] 朱令起, 刘聪, 杨帆. 煤层CO来源的试验研究及分析[J]. 煤炭科学技术,2016,44(增刊1):68-71.

    ZHU Lingqi, LIU Cong, YANG Fan. Experimental study and analysis of CO source in coal seams[J]. Coal Science and Technology,2016,44(S1):68-71.
    [9] 朱红青, 常明然, 王浩然, 等. 煤层原生CO气体存在性研究[J]. 煤炭技术,2017,36(4):139-140.

    ZHU Hongqing, CHANG Mingran, WANG Haoran, et al. Study on existence of coal seam primal CO gas[J]. Coal Technology,2017,36(4):139-140.
    [10] MELTON C E, GIARDINI A A. Composition and volume of gas released by crushing coal from West Virginia, Kentucky and Alabama[J]. Fuel,1975,54(3):162-164. doi: 10.1016/0016-2361(75)90004-6
    [11] MELTON C E, GIARDINI A A. Composition and volume of gas released by 'melting' coal from West Virginia and Alabama[J]. Fuel,1976,55(2):155-156. doi: 10.1016/0016-2361(76)90013-2
    [12] 肖藏岩, 韦重韬, 郭立稳, 等. 开滦矿区低级烟煤大分子结构演化特征及CO成因[J]. 煤田地质与勘探,2015,43(2):8-12. doi: 10.3969/j.issn.1001-1986.2015.02.002

    XIAO Cangyan, WEI Chongtao, GUO Liwen, et al. Macromolecule structure evolution and CO origine of low rank bituminous coal in Kailuan mining area[J]. Coal Geology & Exploration,2015,43(2):8-12. doi: 10.3969/j.issn.1001-1986.2015.02.002
    [13] 余明高, 解俊杰, 贾海林. 机械力作用下煤结构破断CO释放规律及自燃预测指标修正方法[J]. 中国矿业大学学报,2017,46(4):762-768.

    YU Minggao, XIE Junjie, JIA Hailin. Release laws of CO produced by coal structure destruction under mechanical force and modification method of the index for predicting coal spontaneous combustion[J]. Journal of China University of Mining & Technology,2017,46(4):762-768.
    [14] 许继宗, 李信, 王步青, 等. 大水头煤矿煤层原生CO含量及赋存规律的研究[J]. 矿业安全与环保,2004,31(2):18-20. doi: 10.3969/j.issn.1008-4495.2004.02.007

    XU Jizong, LI Xin, WANG Buqing, et al. Research on original CO content and its occurrence regularity in Dashuitou Coal Mine[J]. Mining Safety & Environmental Protection,2004,31(2):18-20. doi: 10.3969/j.issn.1008-4495.2004.02.007
    [15] WANG H, DLUGOGORSKI B Z, KENNEDY E M. Pathways for production of CO2 and CO in low-temperature oxidation of coal[J]. Energy Fuels,2003,17(1):150-158. doi: 10.1021/ef020095l
    [16] 杨广文, 艾兴. 大雁二矿250综采工作面CO来源的分析及治理[J]. 煤矿安全,2003,34(10):41-43. doi: 10.3969/j.issn.1003-496X.2003.10.017

    YANG Guangwen, AI Xing. Analysis and treatment of CO source in 250 fully mechanized mining face of Dayan No. 2 Mine[J]. Safety in Coal Mines,2003,34(10):41-43. doi: 10.3969/j.issn.1003-496X.2003.10.017
    [17] 岳克明. 常温常压下煤对CO吸附及解吸特性研究[D]. 徐州: 中国矿业大学, 2014.

    YUE Keming. Study on characteristics of CO adsorption and desorption of coal under normal temperature and pressure[D]. Xuzhou: China University of Mining and Technology, 2014.
    [18] 汤宗情. 煤自燃过程中孔隙演化机制及其对多元气体吸附特性的影响[D]. 徐州: 中国矿业大学, 2020.

    TANG Zongqing. Pore evolution during coal spontaneous combustion: mechanism and its effect on multi-gas adsorption characteristics[D]. Xuzhou: China University of Mining and Technology, 2020.
    [19] 樊九林. 基于氧同位素法的旬耀矿区原生CO辨识研究[D]. 徐州: 中国矿业大学, 2015.

    FAN Jiulin. Study on identification of original CO in Xunyao mining area based on oxygen isotope method[D]. Xuzhou: China University of Mining and Technology, 2015.
  • 加载中
图(6)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  71
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 录用日期:  2022-01-03
  • 修回日期:  2021-12-29
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回