Research on fault diagnosis method of asynchronous motor based on Park-WPT and WOA-LSSVM
-
摘要: 针对现有电动机多故障诊断技术诊断精度较差、成本高等问题,基于三相定子电流信号对异步电动机转子断条、气隙偏心及其混合故障进行研究,提出了一种基于Park-WPT(Park矢量变换融合小波包变换)和WOA-LSSVM(鲸鱼优化的最小二乘支持向量机)的异步电动机故障诊断方法。通过Park矢量变换对采集到的三相电流信号进行预处理,根据椭圆轨迹的畸变率提取信号特征,作为第1类特征量;对Park矢量模平方谱进行WPT,求取其分解系数的能量值,作为第2类特征量;采用WOA的收缩包围猎物和螺旋更新猎物位置的机制优化LSSVM 中的正则化参数和核宽度,根据提取的2类特征信号建立以WOA-LSSVM为基础的故障诊断模型。实验结果表明,基于Park矢量变换或WPT的单一特征提取算法对混合故障的识别效果较差,故障特征识别率分别为73.75%和88.33%,将2类特征组合后,故障识别率提高到97.08%;WOA-LSSVM的寻优速度较快,故障诊断正确率较高,综合性能优于PSO(粒子群优化)算法、GWO(灰狼优化)算法和GA(遗传算法)优化的LSSVM。Abstract: In order to solve the problems of poor precision and high cost of the existing motor multiple fault diagnosis technology, the rotor broken, air gap eccentricity and their mixed faults of asynchronous motor are studied based on three-phase stator current signals, and a fault diagnosis method of asynchronous motor based on Park-WPT (Park-wavelet packet transform) and WOA-LSVM (whale optimized algorithm-least squares support vector machine) is proposed. The collected three-phase current signals are preprocessed through Park vector transformation, the signal characteristics are extracted according to the distortion rate of the elliptical trajectory and the signal characteristics are taken as the first type characteristic quantity. The wavelet packet transformation is performed on the Park vector modulus square spectrum so as to obtain the energy value of its decomposition coefficient as the second type characteristic quantity. The mechanism of WOA's shrinkage surrounding prey and spiral updating prey position is used to optimize the regularization parameters and kernel width in LSSVM, and a fault diagnosis model based on WOA-LSSVM is established based on the extracted two types of characteristic signals. The experimental results show that the single characteristic extraction algorithm based on Park vector transform or wavelet packet transform has poor recognition effect on mixed faults, and the recognition rates of fault characteristics are 73.75% and 88.33% respectively. The recognition rate is improved to 97.08% by combining the two types of characteristics. WOA-LSSVM has a faster optimization speed and a higher fault diagnosis accuracy rate. Its overall performance is better than PSO (particle swarm optimization) algorithm, GWO (grey wolf optimization) algorithm and GA (genetic algorithm) optimized LSSVM.
-
[1] 鲍晓华,吕强.感应电机气隙偏心故障研究综述及展望[J].中国电机工程学报,2013,33(6):93-100.BAO Xiaohua,LYU Qiang.Review and prospect of air-gap eccentricity faults in induction machines[J].Proceedings of the CSEE,2013,33(6):93-100. [2] 盛玉霞,肖翔,柴利.鼠笼式异步电机转子故障程度诊断方法[J].控制工程,2021,28(1):149-154.SHENG Yuxia,XIAO Xiang,CHAI Li.Rotor fault severity diagnosis of squirrel-cage induction motors[J].Control Engineering of China,2021,28(1):149-154. [3] 徐懂理.一种新型电动机转子断条故障诊断方法[J].工矿自动化,2015,41(9):49-53.XU Dongli.A new fault diagnosis method of broken rotor bar of motor[J].Industry and Mine Automation,2015,41(9):49-53. [4] 许伯强,田士华.Park矢量模平方函数与ESPRIT相结合的异步电动机转子断条故障检测新方法[J].高压电器,2016,52(11):107-112.XU Boqiang,TIAN Shihua.New detection method for broken rotor bar fault in asynchronous motor based on Park's vector modulus and ESPRIT[J].High Voltage Apparatus,2016,52(11):107-112. [5] 任强,官晟,王凤军,等.基于EEMD和PSO-SVM的电机气隙偏心故障诊断[J].组合机床与自动化加工技术,2021(2):73-76.REN Qiang,GUAN Sheng,WANG Fengjun,et al.Motor air-gap eccentricity fault diagnosis based on EEMD and PSO-SVM[J].Modular Machine Tool & Automatic ManufacturingTechnique,2021(2):73-76. [6] GOH Y J,KIM O.Linear method for diagnosis of inter-turn short circuits in 3-phase induction motors[J].Applied Sciences,2019,9(22):4822. [7] VILHEKAR T G,BALLAL M S,SURYAWANSHI H M.Application of multiple parks vector approach for detection of multiple faults in induction motors[J].Journal of Power Electronics,2017,17(4):972-982. [8] 王丽华,谢阳阳,周子贤,等.基于卷积神经网络的异步电机故障诊断[J].振动、测试与诊断,2017,37(6):1208-1215.WANG Lihua,XIE Yangyang,ZHOU Zixian,et al.Motor fault diagnosis based on convolutional neural networks[J].Journal of Vibration,Measurement & Diagnosis,2017,37(6):1208-1215. [9] 李学军,李平,蒋玲莉,等.基于异类信息特征融合的异步电机故障诊断[J].仪器仪表学报,2013,34(1):227-233.LI Xuejun,LI Ping,JIANG Lingli,et al.Fault diagnosis method of asynchronous motor based on heterogeneous information feature fusion[J].Chinese Journal of Scientific Instrument,2013,34(1):227-233. [10] 袁媛,方红彬,殷忠敏.基于多数据融合的电机故障诊断方法研究[J].电气传动,2021,51(9):75-80.YUAN Yuan,FANG Hongbin,YIN Zhongmin.Research on motor fault diagnosis method based on multi data fusion[J].Electric Drive,2021,51(9):75-80. [11] 蒋爱国,符培伦,谷明,等.基于多模态堆叠自动编码器的感应电机故障诊断[J].电子测量与仪器学报,2018,32(8):17-23.JIANG Aiguo,FU Peilun,GU Ming,et al.Induction motor fault diagnosis based on multimodal stacked auto-encoder[J].Journal of Electronic Measurement and Instrumentation,2018,32(8):17-23. [12] 许伯强,褚艳玲.笼型异步电动机转子断条故障在线检测方法评述[J].华北电力大学学报(自然科学版),2008,35(2):6-11.XU Boqiang,CHU Yanling.Reviews on on-line approach detecting rotor bar breaking fault for the squirrel cage asynchronous motors[J].Journal of North China Electric Power University(Natural Science Edition),2008,35(2):6-11. [13] 鞠晨,张超,樊红卫,等.基于小波包分解和PSO-BPNN的滚动轴承故障诊断[J].工矿自动化,2020,46(8):70-74.JU Chen,ZHANG Chao,FAN Hongwei,et al.Rolling bearing fault diagnosis based on wavelet packet decomposition and PSO-BPNN[J].Industry and Mine Automation,2020,46(8):70-74. [14] 孟凡念,杜文辽,巩晓赟,等.基于粒子群优化最小二乘支持向量机的滚动轴承故障识别[J].轴承,2020(12):43-50.MENG Fannian,DU Wenliao,GONG Xiaoyun,et al.Fault recognition of rolling bearings based on LSSVM optimized by particle swarm optimization[J].Bearing,2020(12):43-50. [15] MIRJALILI S,LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51-67.
点击查看大图
计量
- 文章访问数: 228
- HTML全文浏览量: 39
- PDF下载量: 22
- 被引次数: 0