Error modeling and analysis of alternating measurement mode roadheader positioning system
-
摘要: 交替测量式掘进机定位技术在多次交替测量过程中会产生累计测量误差,从而影响掘进机定位精度。目前主要围绕单次测量误差产生原因、误差分布规律及误差减小方法展开研究,未有针对多次交替测量误差分布规律的研究成果。通过分析交替测量式掘进机定位系统工作原理及定位过程,构建了掘进机定位误差模型。采用作图法验证误差模型的正确性,结果表明作图法与误差模型得到的定位误差基本一致,二者仅存在10−3数量级误差。通过误差模型研究了角度测量误差、测距误差、推移步长及掘进机与测量平台间距对掘进机定位误差的影响,结果表明:角度测量误差越大,定位误差曲线的曲率越大,即误差增大越快,且YT轴定位误差增大速度远大于XT轴;测距误差对XT轴定位误差影响较大,测距误差越小,初始XT轴定位误差越小,但误差变化速度不受影响;随着推移步长增大,YT轴定位误差曲线曲率增大,即YT轴定位误差增大速度加快;掘进机与测量平台间距和推移步长对掘进机定位误差的影响基本是等效的。采用正交试验方法分析了各因素对掘进机定位误差的影响程度,结果表明:测距误差对XT轴定位误差影响最大,其次为角度测量误差,推移步长和掘进机与测量平台间距影响最小且二者影响程度一致;角度测量误差对YT轴定位误差影响最大,其次为推移步长和掘进机与测量平台间距且二者影响程度一致,测距误差影响最小。通过极差分析方法得到了降低定位误差的最优参数组合。Abstract: The alternating measurement mode roadheader positioning technology will produce cumulative measurement error in the process of multiple alternating measurement, which will affect the positioning precision of roadheader. At present, the research mainly focuses on the causes of single measurement error, error distribution law and error reduction methods, but there is no research results on the error distribution law of multiple alternating measurement. By analyzing the working principle and positioning process of alternating measurement mode roadheader positioning system, the positioning error model of roadheader is established. The accuracy of the error model is verified by the graphic method, and the results show that the positioning errors obtained by the graphic method and the error model are basically the same, and and there are only 10−3 orders of magnitude errors between them. The impact of angle measurement error, distance measurement error, moving step length and distance between the roadheader and measuring platform on roadheader positioning error is studied by error model. The results show that the larger the angle measurement error, the larger the curvature of the positioning error curve, that is, the faster the error grows. And the YT axis positioning error grows faster than the XT axis. The distance measurement error has a greater impact on the XT axis positioning error, and the smaller the distance measurement error, the smaller the initial XT axis positioning error. However, the error change speed is not affected. As the moving step length increases, the YT axis positioning error curvature increases, that is, the YT axis positioning error growing speed increases. The impacts of the distance between the roadheader and measuring platform and the moving step length on roadheader positioning error are basically equivalent. The orthogonal test method is used to analyze the impact degree of each factor on the positioning error of roadheader. The results show that the distance measurement error has the greatest impact on the positioning error of the XT axis, followed by the angle measurement error. The moving step length and the distance between the roadheader and the measuring platform have the smallest impact and the two have the same degree of impact. The angle measurement error has the greatest impact on the positioning error of the YT axis, followed by the moving step length and the distance between the roadheader and the measuring platform, and the impacts of the two are the same. The impact of the distance measurement error is the smallest. The range analysis method is used to obtain the optimal parameter combination to reduce the positioning error.
-
表 1 掘进机定位误差对比
Table 1. Comparison of positioning errors of roadheader
掘进机
迈步次数作图法确定的掘进机
定位误差/mm式(7)计算的掘进机
定位误差/mmXT轴 YT轴 XT轴 YT轴 1 49.96 20.42 49.964 4 20.420 3 2 49.77 46.42 49.766 7 46.424 9 3 49.37 78.01 49.367 9 78.012 5 4 48.64 115.18 48.642 3 115.181 5 5 47.72 157.93 47.721 1 157.930 1 表 2 正交试验参数
Table 2. Orthogonal test parameters
试验水平 A/(°) B /mm C/mm D/mm 水平1 0.1 20 500 5 000 水平2 0.2 40 600 6 000 水平3 0.3 60 700 7 000 水平4 0.4 80 800 8 000 表 3 正交试验结果
Table 3. Results of orthogonal test
序号 A/(°) B/mm C/mm D/mm 定位误差/mm XT轴 YT轴 1 0.1 20 500 6 000 17.24 192.32 2 0.1 40 600 7 000 36.75 227.55 3 0.1 60 700 8 000 56.25 262.81 4 0.1 80 800 5 000 76.91 228.25 5 0.2 20 600 7 000 67.02 454.21 6 0.2 40 700 8 000 25.03 524.69 7 0.2 60 800 5 000 47.66 455.63 8 0.2 80 500 6 000 68.91 386.53 9 0.3 20 700 8 000 13.62 785.41 10 0.3 40 800 5 000 12.31 681.92 11 0.3 60 500 6 000 35.12 578.21 12 0.3 80 600 7 000 50.64 683.95 13 0.4 20 800 5 000 29.12 907.02 14 0.4 40 500 6 000 64.11 768.92 15 0.4 60 600 7 000 67.90 909.61 16 0.4 80 700 8 000 19.97 1 050.25 表 4 XT轴定位误差极差分析结果
Table 4. Range analysis results of XT-axis positioning errors
指标 A B C D K1/mm 187.2 67.0 125.4 166.0 K2/mm 148.6 78.2 102.3 125.4 K3/mm 111.7 146.9 114.9 102.3 K4/mm 61.1 216.4 166.0 114.9 k1/mm 46.8 16.8 31.3 41.5 k2/mm 37.2 19.6 25.6 31.3 k3/mm 27.9 36.7 28.7 25.6 k4/mm 15.3 54.1 41.5 28.7 极差/mm 31.5 37.4 15.9 15.9 表 5 YT轴定位误差极差分析结果
Table 5. Range analysis results of YT-axis positioning errors
指标 A B C D K1/mm 910.9 2 339.0 1 926.0 2 272.8 K2/mm 1 821.1 2 203.1 2 275.3 1 926.0 K3/mm 2 729.5 2 206.3 2 623.2 2 275.3 K4/mm 3 635.8 2 349.0 2 272.8 2 623.2 k1/mm 227.7 584.7 481.5 568.2 k2/mm 455.3 550.8 568.8 481.5 k3/mm 682.4 551.6 655.8 568.8 k4/mm 909.0 587.2 568.2 655.8 极差/mm 681.2 36.5 174.3 174.3 -
[1] 杨健健, 张强, 吴淼, 等. 巷道智能化掘进的自主感知及调控技术研究进展[J]. 煤炭学报,2020,45(6):2045-2055.YANG Jianjian, ZHANG Qiang, WU Miao, et al. Research progress of autonomous perception and control technology for intelligent heading[J]. Journal of China Coal Society,2020,45(6):2045-2055. [2] 刘治翔, 谢苗, 谢春雪, 等. 截割机构延迟特性对巷道断面成型精度影响分析[J]. 煤炭学报,2020,45(3):1195-1202.LIU Zhixiang, XIE Miao, XIE Chunxue, et al. Effect of delay characteristics of cutting mechanism on forming accuracy of roadway section[J]. Journal of China Coal Society,2020,45(3):1195-1202. [3] 杨文娟, 张旭辉, 马宏伟, 等. 悬臂式掘进机机身及截割头位姿视觉测量系统研究[J]. 煤炭科学技术,2019,47(6):50-57.YANG Wenjuan, ZHANG Xuhui, MA Hongwei, et al. Research on position and posture measurement system of body and cutting head for boom-type roadheader based on machine vision[J]. Coal Science and Technology,2019,47(6):50-57. [4] 邓国华. 基于激光导向器的悬臂式掘进机位置姿态自动测定方法[J]. 工矿自动化,2009,45(9):20-23.DENG Guohua. An automatic detecting method for position and posture of boom-type roadheader based on laser guide[J]. Industry and Mine Automation,2009,45(9):20-23. [5] 刘宇, 陈根林, 刘永忠. 煤矿全断面掘进机捷联惯导曲线测量系统[J]. 工矿自动化,2019,45(8):65-69.LIU Yu, CHEN Genlin, LIU Yongzhong. Strapdown inertial navigation curve measurement system of full-section roadheader in coal mine[J]. Industry and Mine Automation,2019,45(8):65-69. [6] 田原. 基于零速修正的掘进机惯性导航定位方法[J]. 工矿自动化,2019,45(8):70-73.TIAN Yuan. Inertial navigation positioning method of roadheader based on zero-velocity update[J]. Industry and Mine Automation,2019,45(8):70-73. [7] 贾文浩, 陶云飞, 符世琛, 等. 悬臂式掘进机位姿检测方法研究进展[J]. 煤炭科学技术,2016,44(增刊1):96-101.JIA Wenhao, TAO Yunfei, FU Shichen, et al. Research advances on position and attitude measuring methods of boom-type roadheader[J]. Coal Science and Technology,2016,44(S1):96-101. [8] 符世琛, 李一鸣, 杨健健, 等. 基于超宽带技术的掘进机自主定位定向方法研究[J]. 煤炭学报,2015,40(11):2603-2610.FU Shichen, LI Yiming, YANG Jianjian, et al. Research on autonomous positioning and orientation method of roadheader based on ultra wide-band technology[J]. Journal of China Coal Society,2015,40(11):2603-2610. [9] 吴淼, 贾文浩, 华伟, 等. 基于空间交汇测量技术的悬臂式掘进机位姿自主测量方法[J]. 煤炭学报,2015,40(11):2596-2602.WU Miao, JIA Wenhao, HUA Wei, et al. Autonomous measurement of position and attitude of boom-type roadheader based on space intersection measurement[J]. Journal of China Coal Society,2015,40(11):2596-2602. [10] 贾文浩, 陶云飞, 张敏骏, 等. 基于iGPS的煤巷狭长空间中掘进机绝对定位精度研究[J]. 仪器仪表学报,2016,37(8):1920-1926. doi: 10.3969/j.issn.0254-3087.2016.08.025JIA Wenhao, TAO Yunfei, ZHANG Minjun, et al. Research on absolute positioning accuracy of roadheader based on indoor global positioning system in narrow and long coal tunnel[J]. Chinese Journal of Scientific Instrument,2016,37(8):1920-1926. doi: 10.3969/j.issn.0254-3087.2016.08.025 [11] 杜雨馨, 刘停, 童敏明, 等. 基于机器视觉的悬臂式掘进机机身位姿检测系统[J]. 煤炭学报,2016,41(11):2897-2906.DU Yuxin, LIU Ting, TONG Minming, et al. Pose measurement system of boom-type roadheader based on machine vision[J]. Journal of China Coal Society,2016,41(11):2897-2906. [12] 刘治翔, 王帅, 谢苗, 等. 截割头几何因素影响下的巷道表面形貌特征与建模[J]. 中国机械工程,2020,31(21):2583-2591. doi: 10.3969/j.issn.1004-132X.2020.21.009LIU Zhixiang, WANG Shuai, XIE Miao, et al. Characteristics and modeling of roadway surface topography under influences of cutting head geometry[J]. China Mechanical Engineering,2020,31(21):2583-2591. doi: 10.3969/j.issn.1004-132X.2020.21.009 [13] 李旭, 顾永正, 吴淼. 基于微分几何的掘进机工作机构运动学分析[J]. 煤炭学报,2016,41(12):3158-3166.LI Xu, GU Yongzheng, WU Miao. Kinematics analysis of roadheader's working mechanism based on differential geometry[J]. Journal of China Coal Society,2016,41(12):3158-3166. [14] GENG Tao, MENG Qingfeng, WANG Nan, et al. Experimental investigation of film pressure distribution in water-lubricated rubber journal bearings[J]. Proceedings of the Institution of Mchanical Engineers,2014,228(4):397-406. doi: 10.1177/0954411914530104 [15] 陶志刚, 朱淳, 何满潮, 等. 基于正交设计的露天矿V形槽结构滚石防护试验[J]. 煤炭学报,2017,42(9):2307-2315.TAO Zhigang, ZHU Chun, HE Manchao, et al. Test of V shaped groove structure against rockfall based on orthogonal design[J]. Journal of China Coal Society,2017,42(9):2307-2315.