留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交替测量式掘进机定位系统误差建模与分析

李志海 刘治翔 谢苗 李玉岐 王帅

李志海,刘治翔,谢苗,等. 交替测量式掘进机定位系统误差建模与分析[J]. 工矿自动化,2022,48(1):7-15.  doi: 10.13272/j.issn.1671-251x.2021060015
引用本文: 李志海,刘治翔,谢苗,等. 交替测量式掘进机定位系统误差建模与分析[J]. 工矿自动化,2022,48(1):7-15.  doi: 10.13272/j.issn.1671-251x.2021060015
LI Zhihai, LIU Zhixiang, XIE Miao, et al. Error modeling and analysis of alternating measurement mode roadheader positioning system[J]. Industry and Mine Automation,2022,48(1):7-15.  doi: 10.13272/j.issn.1671-251x.2021060015
Citation: LI Zhihai, LIU Zhixiang, XIE Miao, et al. Error modeling and analysis of alternating measurement mode roadheader positioning system[J]. Industry and Mine Automation,2022,48(1):7-15.  doi: 10.13272/j.issn.1671-251x.2021060015

交替测量式掘进机定位系统误差建模与分析

doi: 10.13272/j.issn.1671-251x.2021060015
基金项目: 国家自然科学基金资助项目(51904142, 51874158);辽宁省自然科学基金计划指导项目(2019-ZD-0036)。
详细信息
    作者简介:

    李志海(1968—),男,山西交城人,硕士,主要从事煤矿安全管理工作,E-mail: lzh20208@126.com

    通讯作者:

    刘治翔(1988—),男,辽宁大连人,副教授,博士,研究方向为煤矿掘进装备智能化技术,E-mail: 380357369@qq.com

  • 中图分类号: TD632

Error modeling and analysis of alternating measurement mode roadheader positioning system

  • 摘要: 交替测量式掘进机定位技术在多次交替测量过程中会产生累计测量误差,从而影响掘进机定位精度。目前主要围绕单次测量误差产生原因、误差分布规律及误差减小方法展开研究,未有针对多次交替测量误差分布规律的研究成果。通过分析交替测量式掘进机定位系统工作原理及定位过程,构建了掘进机定位误差模型。采用作图法验证误差模型的正确性,结果表明作图法与误差模型得到的定位误差基本一致,二者仅存在10−3数量级误差。通过误差模型研究了角度测量误差、测距误差、推移步长及掘进机与测量平台间距对掘进机定位误差的影响,结果表明:角度测量误差越大,定位误差曲线的曲率越大,即误差增大越快,且YT轴定位误差增大速度远大于XT轴;测距误差对XT轴定位误差影响较大,测距误差越小,初始XT轴定位误差越小,但误差变化速度不受影响;随着推移步长增大,YT轴定位误差曲线曲率增大,即YT轴定位误差增大速度加快;掘进机与测量平台间距和推移步长对掘进机定位误差的影响基本是等效的。采用正交试验方法分析了各因素对掘进机定位误差的影响程度,结果表明:测距误差对XT轴定位误差影响最大,其次为角度测量误差,推移步长和掘进机与测量平台间距影响最小且二者影响程度一致;角度测量误差对YT轴定位误差影响最大,其次为推移步长和掘进机与测量平台间距且二者影响程度一致,测距误差影响最小。通过极差分析方法得到了降低定位误差的最优参数组合。

     

  • 图  1  交替测量式掘进机定位系统工作原理

    Figure  1.  Working principle of alternating measurement mode roadheader positioning system

    图  2  坐标系定义

    Figure  2.  Coordinate systems definition

    图  3  掘进机定位过程

    Figure  3.  Positioning process of roadheader

    图  4  不同测距误差下掘进机和测量平台的真实位置和测量位置

    Figure  4.  Real position and measuring position of roadheader and measuring platform under different ranging errors

    图  5  作图法确定掘进机定位误差原理

    Figure  5.  Principle of roadheader positioning error determined by drawing method

    图  6  恒定角度测量误差下掘进机定位误差

    Figure  6.  Positioning errors of roadheader under constant angle measurement errors

    图  7  变角度测量误差下掘进机定位误差

    Figure  7.  Positioning errors of roadheader under variable angle measurement errors

    图  8  不同测距误差下掘进机定位误差

    Figure  8.  Positioning errors of roadheader under different ranging errors

    图  9  不同推移步长下掘进机定位误差

    Figure  9.  Positioning errors of roadheader under different moving step length

    图  10  不同掘进机与测量平台间距下掘进机定位误差

    Figure  10.  Positioning errors of roadheader under different distances between roadheader and measuring platform

    表  1  掘进机定位误差对比

    Table  1.   Comparison of positioning errors of roadheader

    掘进机
    迈步次数
    作图法确定的掘进机
    定位误差/mm
    式(7)计算的掘进机
    定位误差/mm
    XTYTXTYT
    149.9620.4249.964 420.420 3
    249.7746.4249.766 746.424 9
    349.3778.0149.367 978.012 5
    448.64115.1848.642 3115.181 5
    547.72157.9347.721 1157.930 1
    下载: 导出CSV

    表  2  正交试验参数

    Table  2.   Orthogonal test parameters

    试验水平A/(°)B /mmC/mmD/mm
    水平10.1205005 000
    水平20.2406006 000
    水平30.3607007 000
    水平40.4808008 000
    下载: 导出CSV

    表  3  正交试验结果

    Table  3.   Results of orthogonal test

    序号A/(°)B/mmC/mmD/mm定位误差/mm
    XTYT
    10.1205006 00017.24192.32
    20.1406007 00036.75227.55
    30.1607008 00056.25262.81
    40.1808005 00076.91228.25
    50.2206007 00067.02454.21
    60.2407008 00025.03524.69
    70.2608005 00047.66455.63
    80.2805006 00068.91386.53
    90.3207008 00013.62785.41
    100.3408005 00012.31681.92
    110.3605006 00035.12578.21
    120.3806007 00050.64683.95
    130.4208005 00029.12907.02
    140.4405006 00064.11768.92
    150.4606007 00067.90909.61
    160.4807008 00019.971 050.25
    下载: 导出CSV

    表  4  XT轴定位误差极差分析结果

    Table  4.   Range analysis results of XT-axis positioning errors

    指标ABCD
    K1/mm187.267.0125.4166.0
    K2/mm148.678.2102.3125.4
    K3/mm111.7146.9114.9102.3
    K4/mm61.1216.4166.0114.9
    k1/mm46.816.831.341.5
    k2/mm37.219.625.631.3
    k3/mm27.936.728.725.6
    k4/mm15.354.141.528.7
    极差/mm31.537.415.915.9
    下载: 导出CSV

    表  5  YT轴定位误差极差分析结果

    Table  5.   Range analysis results of YT-axis positioning errors

    指标ABCD
    K1/mm910.92 339.01 926.02 272.8
    K2/mm1 821.12 203.12 275.31 926.0
    K3/mm2 729.52 206.32 623.22 275.3
    K4/mm3 635.82 349.02 272.82 623.2
    k1/mm227.7584.7481.5568.2
    k2/mm455.3550.8568.8481.5
    k3/mm682.4551.6655.8568.8
    k4/mm909.0587.2568.2655.8
    极差/mm681.236.5174.3174.3
    下载: 导出CSV
  • [1] 杨健健, 张强, 吴淼, 等. 巷道智能化掘进的自主感知及调控技术研究进展[J]. 煤炭学报,2020,45(6):2045-2055.

    YANG Jianjian, ZHANG Qiang, WU Miao, et al. Research progress of autonomous perception and control technology for intelligent heading[J]. Journal of China Coal Society,2020,45(6):2045-2055.
    [2] 刘治翔, 谢苗, 谢春雪, 等. 截割机构延迟特性对巷道断面成型精度影响分析[J]. 煤炭学报,2020,45(3):1195-1202.

    LIU Zhixiang, XIE Miao, XIE Chunxue, et al. Effect of delay characteristics of cutting mechanism on forming accuracy of roadway section[J]. Journal of China Coal Society,2020,45(3):1195-1202.
    [3] 杨文娟, 张旭辉, 马宏伟, 等. 悬臂式掘进机机身及截割头位姿视觉测量系统研究[J]. 煤炭科学技术,2019,47(6):50-57.

    YANG Wenjuan, ZHANG Xuhui, MA Hongwei, et al. Research on position and posture measurement system of body and cutting head for boom-type roadheader based on machine vision[J]. Coal Science and Technology,2019,47(6):50-57.
    [4] 邓国华. 基于激光导向器的悬臂式掘进机位置姿态自动测定方法[J]. 工矿自动化,2009,45(9):20-23.

    DENG Guohua. An automatic detecting method for position and posture of boom-type roadheader based on laser guide[J]. Industry and Mine Automation,2009,45(9):20-23.
    [5] 刘宇, 陈根林, 刘永忠. 煤矿全断面掘进机捷联惯导曲线测量系统[J]. 工矿自动化,2019,45(8):65-69.

    LIU Yu, CHEN Genlin, LIU Yongzhong. Strapdown inertial navigation curve measurement system of full-section roadheader in coal mine[J]. Industry and Mine Automation,2019,45(8):65-69.
    [6] 田原. 基于零速修正的掘进机惯性导航定位方法[J]. 工矿自动化,2019,45(8):70-73.

    TIAN Yuan. Inertial navigation positioning method of roadheader based on zero-velocity update[J]. Industry and Mine Automation,2019,45(8):70-73.
    [7] 贾文浩, 陶云飞, 符世琛, 等. 悬臂式掘进机位姿检测方法研究进展[J]. 煤炭科学技术,2016,44(增刊1):96-101.

    JIA Wenhao, TAO Yunfei, FU Shichen, et al. Research advances on position and attitude measuring methods of boom-type roadheader[J]. Coal Science and Technology,2016,44(S1):96-101.
    [8] 符世琛, 李一鸣, 杨健健, 等. 基于超宽带技术的掘进机自主定位定向方法研究[J]. 煤炭学报,2015,40(11):2603-2610.

    FU Shichen, LI Yiming, YANG Jianjian, et al. Research on autonomous positioning and orientation method of roadheader based on ultra wide-band technology[J]. Journal of China Coal Society,2015,40(11):2603-2610.
    [9] 吴淼, 贾文浩, 华伟, 等. 基于空间交汇测量技术的悬臂式掘进机位姿自主测量方法[J]. 煤炭学报,2015,40(11):2596-2602.

    WU Miao, JIA Wenhao, HUA Wei, et al. Autonomous measurement of position and attitude of boom-type roadheader based on space intersection measurement[J]. Journal of China Coal Society,2015,40(11):2596-2602.
    [10] 贾文浩, 陶云飞, 张敏骏, 等. 基于iGPS的煤巷狭长空间中掘进机绝对定位精度研究[J]. 仪器仪表学报,2016,37(8):1920-1926. doi: 10.3969/j.issn.0254-3087.2016.08.025

    JIA Wenhao, TAO Yunfei, ZHANG Minjun, et al. Research on absolute positioning accuracy of roadheader based on indoor global positioning system in narrow and long coal tunnel[J]. Chinese Journal of Scientific Instrument,2016,37(8):1920-1926. doi: 10.3969/j.issn.0254-3087.2016.08.025
    [11] 杜雨馨, 刘停, 童敏明, 等. 基于机器视觉的悬臂式掘进机机身位姿检测系统[J]. 煤炭学报,2016,41(11):2897-2906.

    DU Yuxin, LIU Ting, TONG Minming, et al. Pose measurement system of boom-type roadheader based on machine vision[J]. Journal of China Coal Society,2016,41(11):2897-2906.
    [12] 刘治翔, 王帅, 谢苗, 等. 截割头几何因素影响下的巷道表面形貌特征与建模[J]. 中国机械工程,2020,31(21):2583-2591. doi: 10.3969/j.issn.1004-132X.2020.21.009

    LIU Zhixiang, WANG Shuai, XIE Miao, et al. Characteristics and modeling of roadway surface topography under influences of cutting head geometry[J]. China Mechanical Engineering,2020,31(21):2583-2591. doi: 10.3969/j.issn.1004-132X.2020.21.009
    [13] 李旭, 顾永正, 吴淼. 基于微分几何的掘进机工作机构运动学分析[J]. 煤炭学报,2016,41(12):3158-3166.

    LI Xu, GU Yongzheng, WU Miao. Kinematics analysis of roadheader's working mechanism based on differential geometry[J]. Journal of China Coal Society,2016,41(12):3158-3166.
    [14] GENG Tao, MENG Qingfeng, WANG Nan, et al. Experimental investigation of film pressure distribution in water-lubricated rubber journal bearings[J]. Proceedings of the Institution of Mchanical Engineers,2014,228(4):397-406. doi: 10.1177/0954411914530104
    [15] 陶志刚, 朱淳, 何满潮, 等. 基于正交设计的露天矿V形槽结构滚石防护试验[J]. 煤炭学报,2017,42(9):2307-2315.

    TAO Zhigang, ZHU Chun, HE Manchao, et al. Test of V shaped groove structure against rockfall based on orthogonal design[J]. Journal of China Coal Society,2017,42(9):2307-2315.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  1424
  • HTML全文浏览量:  59
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-05
  • 修回日期:  2022-01-10
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回