留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IWOA−SVM的煤矿突水预测模型

秋兴国 李靖

秋兴国,李靖. 基于IWOA−SVM的煤矿突水预测模型[J]. 工矿自动化,2022,48(1):69-75.  doi: 10.13272/j.issn.1671-251x.2021050043
引用本文: 秋兴国,李靖. 基于IWOA−SVM的煤矿突水预测模型[J]. 工矿自动化,2022,48(1):69-75.  doi: 10.13272/j.issn.1671-251x.2021050043
QIU Xingguo, LI Jing. Prediction model of water inrush in coal mine based on IWOA-SVM[J]. Industry and Mine Automation,2022,48(1):69-75.  doi: 10.13272/j.issn.1671-251x.2021050043
Citation: QIU Xingguo, LI Jing. Prediction model of water inrush in coal mine based on IWOA-SVM[J]. Industry and Mine Automation,2022,48(1):69-75.  doi: 10.13272/j.issn.1671-251x.2021050043

基于IWOA−SVM的煤矿突水预测模型

doi: 10.13272/j.issn.1671-251x.2021050043
基金项目: 陕西省自然科学基础研究资助项目(2019JM-348)。
详细信息
    作者简介:

    秋兴国(1964-),男,陕西乾县人,教授,研究方向为计算机监测与控制、智能信息处理、煤矿灾害监测预报,E-mail: sxxykj@126.com

  • 中图分类号: TD745

Prediction model of water inrush in coal mine based on IWOA-SVM

  • 摘要: 针对传统煤矿突水预测算法易陷入局部最优、预测结果准确率低及速度慢等问题,提出一种基于改进鲸鱼优化算法(IWOA)−支持向量机(SVM)的煤矿突水预测模型。IWOA从鲸鱼种群初始化、调节因子非线性化及随机差分进化(DE)3个方面入手对鲸鱼优化算法(WOA)进行改进:使用Tent映射初始化鲸鱼种群,提高鲸鱼种群寻找到最优猎物的可能性;通过调节因子非线性变化策略,提升算法在迭代前期的全局搜索能力及迭代后期的局部搜索能力,从而加快收敛速度;引入DE算法的变异、交叉、选择操作,以增强WOA的全局搜索能力。利用IWOA对SVM模型进行参数优化,将影响煤矿突水的水压、隔水层厚度、煤层倾角、断层落差、断层与工作面距离、采高共6个影响因素作为模型的输入特征向量,突水与安全2种突水结果作为模型的输出向量,以突水预测结果与实际结果间的误差最小化为目标建立目标函数,得到基于IWOA−SVM的煤矿突水预测模型。实验结果表明:与粒子群优化算法、DE算法、WOA相比,IWOA的预测准确率最高,标准误差最小,且收敛速度快,鲁棒性好;IWOA−SVM的突水预测准确率达到100%,与传统的突水系数法、SVM、WOA−SVM相比,IWOA−SVM表现出更高的准确率和稳定性。

     

  • 图  1  基于IWOA−SVM的煤矿突水预测流程

    Figure  1.  Water inrush prediction flow based on IWOA−SVM

    图  2  4种算法的收敛曲线

    Figure  2.  Convergence curves of four algorithms

    图  3  IWOA−SVM预测结果

    Figure  3.  IWOA−SVM prediction results

    表  1  归一化处理后的部分突水数据

    Table  1.   Partial water inrush data after normalization

    样本编号水压z1隔水层厚度z2煤层倾角z3断层落差z4断层与工作面距离z5采高z6突水状态
    1 0.383 4 0.199 4 0.466 7 0.080 0 0.123 1 0 1
    2 0.339 4 0.188 5 0.800 0 1.000 0 0.692 3 0.111 1 1
    7 0.256 4 0.400 7 0.133 3 0.016 0 0.476 9 0.006 9 0
    8 0.172 3 0.258 0 0.533 3 0.064 0 0.061 5 0.090 3 1
    12 0 0.325 5 0.066 7 0.440 0 0.046 2 0.013 9 0
    19 0.158 0 0.209 4 0.066 7 0.020 0 0.423 1 0.090 3 0
    25 0.497 4 0.453 5 0.333 3 0.035 0 0.061 5 0.152 8 1
    32 0.196 9 0.070 6 0.400 0 0.300 0 0.123 1 0.111 1 1
    34 0.717 6 0.560 4 0.400 0 0.070 0 0.092 3 0.251 4 1
    42 0.300 5 0.451 5 0.566 7 0.024 0 0.053 8 0.097 2 0
    43 0.373 1 0.451 5 0.600 0 0.220 0 0.276 9 0.097 2 0
    下载: 导出CSV

    表  2  4种算法的寻优结果

    Table  2.   Optimizing results of four algorithms

    算法寻优结果准确率/%标准
    误差
    收敛
    代数
    cσ
    PSO 4.358 0.010 60.47 0.489 100
    DE 7.208 0.325 83.72 0.386 29
    WOA 29.136 0.066 81.39 0.408 43
    IWOA 6.517 0.418 88.37 0.333 8
    下载: 导出CSV

    表  3  不同方法预测结果比较

    Table  3.   Comparison of prediction results of different methods

    序号实际结果预测结果
    突水系数法SVMWOA−SVMIWOA−SVM
    44 0 0 1 0 0
    45 1 0 1 1 1
    46 0 0 0 0 0
    47 0 0 0 0 0
    48 0 0 0 0 0
    49 1 1 1 1 1
    50 0 0 1 0 0
    51 1 0 1 0 1
    52 1 0 1 1 1
    53 0 0 0 0 0
    54 1 1 1 1 1
    55 1 1 1 1 1
    下载: 导出CSV
  • [1] 陈恋, 袁梅, 向维, 等. PCA−Fisher判别模型在煤层底板突水预测中的应用[J]. 数学的实践与认识,2021,51(6):103-111.

    CHEN Lian, YUAN Mei, XIANG Wei, et al. Application of PCA-Fisher discriminant model in prediction of water inrush from coal seam floor[J]. Mathematics in Practice and Theory,2021,51(6):103-111.
    [2] 张立新, 李长洪, 赵宇. 矿井突水预测研究现状及发展趋势[J]. 中国矿业,2009,18(1):88-90. doi: 10.3969/j.issn.1004-4051.2009.01.025

    ZHANG Lixin, LI Changhong, ZHAO Yu. State of research on prediction and forecast of groundwater inrush in mine and its development trend[J]. China Mining Magazine,2009,18(1):88-90. doi: 10.3969/j.issn.1004-4051.2009.01.025
    [3] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京: 煤炭工业出版社, 2018.

    State Administration of Coal Mine Safty. Rules for coal mine water prevention and control[M]. Beijing: China Coal Industry Publishing House, 2018.
    [4] 潘晖, 王继尧. 基于粒子群优化神经网络的煤层底板突水预测[J]. 山西焦煤科技,2009(1):34-36. doi: 10.3969/j.issn.1672-0652.2009.01.013

    PAN Hui, WANG Jiyao. Forecast for water-inrush from coal floor based on neural networks trained by particle swarm optimization[J]. Shanxi Coking Coal Science & Technology,2009(1):34-36. doi: 10.3969/j.issn.1672-0652.2009.01.013
    [5] 宋国娟. 基于极限学习机的煤矿突水预测及避险路线优化研究[D]. 徐州: 中国矿业大学, 2016.

    SONG Guojuan. Research on mine water inrush prediction based on extreme learning machine and route optimization[D]. Xuzhou: China University of Mining and Technology, 2016.
    [6] WANG Ge, WEI Junjie, YAO Banghua. A coal mine water inrush prediction model based on artificial intelligence[J]. International Journal of Safety and Security Engineering,2020,10(4):501-508. doi: 10.18280/ijsse.100409
    [7] 师煜, 朱希安, 王占刚, 等. 基于GAPSO−RFR的矿井底板突水预测模型与应用[J]. 中国矿业,2020,29(8):152-157.

    SHI Yu, ZHU Xi'an, WANG Zhangang, et al. Forecast model of mine floor water inrush based on genetic particle swarm optimization and random forest regression and its application[J]. China Mining Magazine,2020,29(8):152-157.
    [8] 李颖. 基于支持向量机的煤层底板突水预测方法研究[D]. 北京: 煤炭科学研究总院, 2007.

    LI Ying. Research on prediction method of coal seam floor water inrush based on support vector machine [D]. Beijing: China Coal Research Institute, 2007.
    [9] 张风达, 申宝宏. 深部煤层底板突水危险性预测的PSO_SVM模型[J]. 煤炭科学技术,2018,46(7):61-67.

    ZHANG Fengda, SHEN Baohong. PSO_SVM prediction model for evaluating water inrush risk from deep coal seam floor[J]. Coal Science and Technology,2018,46(7):61-67.
    [10] 李腾, 朱希安, 王占刚. 矿井突水水源判别的FOA−LSSVM模型[J]. 北京信息科技大学学报(自然科学版),2020,35(3):41-45.

    LI Teng, ZHU Xi'an, WANG Zhangang. FOA-LSSVM model for source identification of mine water inrush[J]. Journal of Beijing Information Science & Technology University(Natural Science Edition),2020,35(3):41-45.
    [11] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software,2016,95:51-67. doi: 10.1016/j.advengsoft.2016.01.008
    [12] 宰慧. 基于PSO−SVM的煤层底板突水危险性预测研究[D]. 青岛: 山东科技大学, 2017.

    ZAI Hui. The coal floor water-inrush risk prediction research based on the PSO-SVM[D]. Qingdao: Shandong University of Science and Technology, 2017.
    [13] 赵欣. 不同一维混沌映射的优化性能比较研究[J]. 计算机应用研究,2012,29(3):913-915. doi: 10.3969/j.issn.1001-3695.2012.03.031

    ZHAO Xin. Research on optimization performance comparison of different one-dimensional chaotic maps[J]. Application Research of Computers,2012,29(3):913-915. doi: 10.3969/j.issn.1001-3695.2012.03.031
    [14] 李雪岩, 李雪梅, 李学伟, 等. 基于混沌映射的元胞遗传算法[J]. 模式识别与人工智能,2015,28(1):42-49.

    LI Xueyan, LI Xuemei, LI Xuewei, et al. Cellular genetic algorithm based on chaotic map[J]. Pattern Recognition and Artificial Intelligence,2015,28(1):42-49.
    [15] 赵宇, 彭珍瑞. 混沌鲸鱼优化算法及其在有限元模型修正中的应用[J]. 兰州交通大学学报,2021,40(1):39-45.

    ZHAO Yu, PENG Zhenrui. Whale optimization algorithm with chaotic maps and its application in finite element model updating[J]. Journal of Lanzhou Jiaotong University,2021,40(1):39-45.
    [16] 刘伟韬. 矿井水害与防治[M]. 北京: 煤炭工业出版社, 2016.

    LIU Weitao. Mine water disaster and prevention[M]. Beijing: China Coal Industry Publishing House, 2016.
    [17] 石秀伟, 胡耀青, 张和生. 基于GIS的煤层底板突水预测理论模型[J]. 太原理工大学学报,2008,38(增刊2):244-246.

    SHI Xiuwei, HU Yaoqing, ZHANG Hesheng. GIS-based forecasting model of floor water bursting in coal mines[J]. Journal of Taiyuan University of Technology,2008,38(S2):244-246.
    [18] NIU Huigong, WEI Jiuchuan, YIN Huiyong. An improved model to predict the water-inrush risk from an Ordovician limestone aquifer under coal seams: a case study of the Longgu Coal Mine in China[J]. Carbonates and Evaporites,2020,35(3):1-16.
    [19] SHI Longqing, GAO Weifu, HAN Jin, et al. A nonlinear risk evaluation method for water inrush through the seam floor[J]. Mine Water and the Environment,2017,36:597-605. doi: 10.1007/s10230-017-0449-1
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  86
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 修回日期:  2022-01-07
  • 刊出日期:  2022-01-20

目录

    /

    返回文章
    返回