Method of cutting trajectory planning of roadheader based on hybrid IWO-PSO algorithm
-
摘要: 针对掘进机截割轨迹规划方法准确度低、对掘进设备损耗大的问题,提出了一种基于混合IWO(杂草优化)-PSO(粒子群优化)算法的掘进机截割轨迹规划方法。将截割断面环境分为单夹矸、双夹矸和多夹矸3种,对相应断面进行栅格化并建立栅格地图,采用二值膨胀法对不规则夹矸进行膨胀化处理,并采用混合IWO-PSO算法在3种断面环境中进行轨迹规划。混合IWO-PSO算法以IWO算法中的种子扩散方式为基础,对初始群体进行扩散,在竞争排斥前允许所有个体自由繁殖,使寻优空间的多样化得到有效保障;同时采用PSO算法中的位置迭代更新方式对繁殖的种子位置进行迭代更新,利用群体经验和个体经验对粒子位置进行及时调整,有效提高了算法寻优深度和速度。仿真结果表明,基于混合IWO-PSO算法得到的掘进机截割轨迹长度、二次挖掘栅格数和截割能耗均小于标准PSO算法,对障碍夹矸的规避能力优于标准PSO算法。通过EBZ135型掘进机进行断面截割试验,结果表明,巷道断面成形左侧、右侧、两侧边界误差最大值分别为30,20,50 mm,相对误差分别在2%,1.4%,1.7%内,可满足不同巷道断面环境下的有效避障和成形要求。Abstract: In order to solve the problems of low accuracy and large loss of heading equipment in cutting trajectory planning method of roadheader, a cutting trajectory planning method of roadheader based on hybrid IWO (invasive weed optimization)-PSO (particle swarm optimization) algorithm is proposed. The cutting section environments are divided into three types, namely single gangue, double gangue and multi-gangue, and the corresponding sections are rasterized and the grid map is established. The irregular gangue is expanded by using binary expansion method. The hybrid IWO-PSO algorithm is used for trajectory planning in the three types of section environments. The hybrid IWO-PSO algorithm is based on the seed diffusion method in IWO algorithm, which diffuses the initial population and allows all individuals to reproduce freely before competitive exclusion, thus effectively ensuring the diversity of optimization space. The position iterative update method in PSO algorithm is also used to iteratively update the reproduced seed positions, and the particle positions are adjusted in time by using group experience and individual experience to improve the optimization depth and speed of the algorithm effectively. The simulation results show that the length of cutting trajectory, the number of secondary excavation grids and the cutting energy consumption of the roadheader based on the hybrid IWO-PSO algorithm are smaller than those of the standard PSO algorithm, and the capability to avoid the obstacle and gangue is better than that of the standard PSO algorithm. The section cutting test is carried out by EBZ135 roadheader, and the results show that the maximum errors of the left side, right side and both sides of the roadway section forming are 30, 20 and 50 mm respectively, and the relative error is within 2%, 1.4% and 1.7% respectively, which can meet the requirements of effective obstacle avoidance and forming under different roadway section environments.
-
[1] 王国法.加快煤矿智能化建设推进煤炭行业高质量发展[J].中国煤炭,2021,47(1):2-10.WANG Guofa.Speeding up intelligent construction of coal mine and promoting high-quality development of coal industry[J].China Coal,2021,47(1):2-10. [2] 姜潍.煤炭开采过程中的安全管理问题及策略[J].煤炭技术,2012,31(5):261-262.JIANG Wei.Safety management problems and strategies in coal mining process[J].Coal Technology,2012,31(5):261-262. [3] 葛世荣,郝雪弟,田凯,等.采煤机自主导航截割原理及关键技术[J].煤炭学报,2021,46(3):774-788.GE Shirong,HAO Xuedi,TIAN Kai,et al.Principle and key technology of autonomous navigation cutting for deep coal seam[J].Journal of China Coal Society,2021,46(3):774-788. [4] WANG S,MIAO W.Cutting trajectory planning of sections with complex composition for roadheader[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2018,233(4):1441-1452. [5] WANG F,GAO Y,ZHANG F.Research on trajectory tracking strategy of roadheader cutting head using ILC[C]//Proceedings of the 2015 Chinese Intelligent Systems Conference,Berlin,Heidelberg:Springer,2016:35-44. [6] 刘若涵,刘永立.栅格法与Dijkstra算法的掘进机截割轨迹规划[J].黑龙江科技大学学报,2021,31(1):60-67.LIU Ruohan,LIU Yongli.Cutting trajectory planning of cantilever roadheader based on grid method and Dijkstra algorithm[J].Journal of Heilongjiang University of Science and Technology,2021,31(1):60-67. [7] 夏煌煌.基于蚁群算法的煤矿巷道断面成型轨迹规划方法[D].徐州:中国矿业大学,2020.XIA Huanghuang.Trajectory planning method of forming a section in coal mine roadway based on ant colony algorithm[D].Xuzhou:China University of Mining and Technology,2020. [8] GHTHWAN A S,AL-HAYDER A A,HASSOONI A S.Hybrid IWOPSO optimization based marine engine rotational speed control automatic system[J].International Journal of Electrical and Computer Engineering,2020,10(1):840. [9] ALSAIF H,KAHOULI O,BOUTERAA Y,et al.Power system reconfiguration in distribution network for improving reliability using genetic algorithm and particle swarm optimization[J].Applied Sciences,2021,11(7):3092. [10] WANG Y,WANG Q,ZHANG H,et al.Improved particle swarm optimization algorithm for optimization of power communication network[J].International Journal of Grid and Distributed Computing,2016,9(1):225-236. [11] 李著成,黄祥林.采用位置混沌重构的入侵杂草优化在盲源分离的应用[J].计算机应用研究,2020,37(2):477-480.LI Zhucheng,HUANG Xianglin.Application of invasive weed optimization based on location chaos reconstruction to blind source separation[J].Application Research of Computers,2020,37(2):477-480. [12] 杨雨佳,神显豪,刘珊珊,等.基于入侵性杂草优化的机械手逆向运动学求解[J].济南大学学报(自然科学版),2021,35(3):265-270.YANG Yujia,SHEN Xianhao,LIU Shanshan,et al.Inverse kinematics solution of manipulators based on invasive weed optimization[J].Journal of University of Jinan(Science and Technology),2021,35(3):265-270. [13] 田劼,王红尧,吴淼.掘进自动截割成形控制系统动态特性分析[J].工矿自动化,2015,41(6):40-44.TIAN Jie,WANG Hongyao,WU Miao.Dynamic characteristics analysis of automatic cutting and profiling control system for roadheader[J].Industry and Mine Automation,2015,41(6):40-44. [14] 王苏彧,田劼,吴淼.纵轴式掘进机截割轨迹规划及边界控制方法研究[J].煤炭科学技术,2016,44(4):89-94.WANG Suyu,TIAN Jie,WU Miao.Study on cutting trace planning of longitudinal roadheader and boundary control method[J].Coal Science and Technology,2016,44(4):89-94.
点击查看大图
计量
- 文章访问数: 133
- HTML全文浏览量: 15
- PDF下载量: 15
- 被引次数: 0