Support state perception and data processing technology of hydraulic support
-
摘要: 液压支架支护状态感知与数据处理是实现液压支架自适应支护及顶板灾害超前预测预警的关键,但现有技术主要是对液压支架初撑力、循环末阻力等进行统计分析,存在感知信息不充分、数据挖掘不深入、预测预警不精准等问题。分析了采动应力与顶板断裂、液压支架载荷变化之间的关系,阐述了顶板岩层断裂失稳过程的“五阶段”观点及液压支架合理工作阻力确定的“双因素”控制方法;给出了液压支架支护状态特征参量,提出了基于液压支架与围岩耦合关系的液压支架支护状态综合感知技术架构,指出非接触式传感器将是解决群组液压支架支护状态感知不充分等问题的关键;针对液压支架支护状态感知数据维度低、样本数量少、多特征参量关联的特点,提出了基于模板曲线库的液压支架支护状态感知数据分析预测思路,基于采动应力与液压支架支护状态之间的映射关系提出了顶板灾害智能预测平台技术架构,可实现液压支架异常支护工况、顶板灾害的超前预测预警。Abstract: The support state perception and data processing of hydraulic support are the key factors to realize adaptive support of hydraulic support and advance prediction and early warning of roof disasters.However, the existing technology mainly performs statistical analysis of hydraulic support initial support force and end-of-loop resistance.There are problems such as insufficient perception information, in-depth data mining and inaccurate prediction and early warning.The relationship between mining stress, roof fracture and hydraulic support load change is analyzed, and the 'five-stage' viewpoint of the destabilization process of roof rock fracture and the 'double-factor' control method of determining the reasonable working resistance of hydraulic support are explained.The characteristic parameters of the support state of the hydraulic support are given, and a technology architecture for the comprehensive perception of the support state of the hydraulic support based on the coupling relationship between the hydraulic support and the surrounding rock is proposed.Moreover, it is pointed out that the non-contact sensor will be the key to solve the problem of inadequate sensing of the support state of the group hydraulic support.In view of the characteristics of low dimension, small number of samples, and correlation of multiple characteristic parameters of support state perception data of hydraulic support, the analysis and prediction method of hydraulic support support state perception data based on template curve library is proposed.Based on the mapping relationship between mining stress and hydraulic support support state, the technology architecture of roof disaster intelligent prediction platform is proposed, which can realize the advance prediction and early warning of abnormal hydraulic support support condition and roof disaster.
-
[1] 王国法,任怀伟,庞义辉,等.煤矿智能化(初级阶段)技术体系研究与工程进展[J].煤炭科学技术,2020,48(7):1-27.WANG Guofa,REN Huaiwei,PANG Yihui,et al.Research and engineering progress of intelligent coal mine technical system in early stages[J].Coal Science and Technology,2020,48(7):1-27. [2] 刘峰,曹文君,张建明.持续推进煤矿智能化促进我国煤炭工业高质量发展[J].中国煤炭,2019,45(12):32-36.LIU Feng,CAO Wenjun,ZHANG Jianming.Continuously promoting the coal mine intellectualization and the high-quality development of China's coal industry[J].China Coal,2019,45(12):32-36. [3] 钱鸣高,石平五,许家林,等.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.QIAN Minggao,SHI Pingwu,XU Jialin,et al.Mine pressure and strata control[M].Xuzhou:China University of Mining and Technology Press,2010. [4] 宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988.SONG Zhenqi.Practical mine pressure control[M].Xuzhou:China University of Mining and Technology Press,1988. [5] 王国法,庞义辉,李明忠,等.超大采高工作面液压支架与围岩耦合作用关系[J].煤炭学报,2017,42(2):518-526.WANG Guofa,PANG Yihui,LI Mingzhong,et al.Hydraulic support and coal wall coupling relationship in ultra large height mining face[J].Journal of China Coal Society,2017,42(2):518-526. [6] 王国法,庞义辉.液压支架与围岩耦合关系及应用[J].煤炭学报,2015,40(1):30-34.WANG Guofa,PANG Yihui.Relationship between hydraulic support and surrounding rock coupling and its application[J].Journal of China Coal Society,2015,40(1):30-34. [7] 王家臣,杨胜利,杨宝贵,等.深井超长工作面基本顶分区破断模型与支架阻力分布特征[J].煤炭学报,2019,44(1):54-63.WANG Jiachen,YANG Shengli,YANG Baogui,et al.Roof sub-regional fracturing and support resistance distribution in deep longwall face with ultra-large length[J].Journal of China Coal Society,2019,44(1):54-63. [8] 伍永平,胡博胜,解盘石,等.基于支架-围岩耦合原理的模拟试验液压支架及测控系统研制与应用[J].岩石力学与工程学报,2018,37(2):374-382.WU Yongping,HU Bosheng,XIE Panshi,et al.Development and application of support and control system for simulating test based on the coupling principle of support-surrounding rocks[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(2):374-382. [9] 徐亚军,王国法,张金虎,等.基于弹性独立支座的大采高综采工作面液压支架群组支护应力场理论与应用[J].岩石力学与工程学报,2018,37(5):1226-1236.XU Yajun,WANG Guofa,ZHANG Jinhu,et al.Theory and application of supporting stress fields of hydraulic powered support groups in fully mechanized mining face with large mining height based on elastic supporting beam model[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1226-1236. [10] 万丽荣,刘鹏,孟昭胜,等.冲击载荷作用于掩护梁对液压支架的影响分析[J].煤炭学报,2017,42(9):2462-2467.WAN Lirong,LIU Peng,MENG Zhaosheng,et al.Analysis of the influence of impact load on shield beam of hydraulic support[J].Journal of China Coal Society,2017,42(9):2462-2467. [11] 宋高峰,王振伟,钟晓勇.坚硬顶板破断冲击机理及支架与围岩“收敛-约束”耦合机制研究[J].采矿与安全工程学报,2020,37(5):951-959.SONG Gaofeng,WANG Zhenwei,ZHONG Xiaoyong.Dynamic impact mechanism of hard roof strata and coupling mechanism of "constrain-convergence" between support and surrounding rock[J].Journal of Mining & Safety Engineering,2020,37(5):951-959. [12] 史元伟.液压支架与围岩力学相互作用及支架选型研究[J].煤炭科学技术,1999,27(5):30-35.SHI Yuanwei.Mutual function between hydraulic powered support and surrounding rock mechanism and study on selection of hydraulic support[J].Coal Science and Technology,1999,27(5):30-35. [13] 方新秋,梁敏富,李爽,等.智能工作面多参量精准感知与安全决策关键技术[J].煤炭学报,2020,45(1):493-508.FANG Xinqiu,LIANG Minfu,LI Shuang,et al.Key technologies of multi-parameter accurate perception and security decision in intelligent working face[J].Journal of China Coal Society,2020,45(1):493-508. [14] 杨健健,张强,吴淼,等.巷道智能化掘进的自主感知及调控技术研究进展[J].煤炭学报,2020,45(6):2045-2055.YANG Jianjian,ZHANG Qiang,WU Miao,et al.Research progress of autonomous perception and control technology for intelligent heading[J].Journal of China Coal Society,2020,45(6):2045-2055. [15] 王家臣,PENG S S,李杨.美国煤炭地下开采与自动化技术进展[J].煤炭学报,2021,46(1):36-45.WANG Jiachen,PENG S S,LI Yang.State-of-the-art in underground coal mining and automation technology in the united states[J].Journal of China Coal Society,2021,46(1):36-45. [16] PENG S S,CHENG Jingyi,DU Feng,et al.Underground ground control monitoring and interpretation, and numerical modeling, and shield capacity design[J].Journal of Mining Science and Technology,2019,29(1):79-85. [17] BARCZAK T M,CONOVER D P.NIOSH shield hydraulics inspection and evaluation of leg data(shield)computer program[C]//The 21st International Conference on Ground Control,Morgantown,2002:27-33. [18] CHENG H.Analysis of powered supports resistance and roof behavior[D].Morgantown:West Virginia University,1998. [19] TRUEMAN R,CALLAN M,THOMAS R,et al.Quantifying the impact of cover depth and panel width on longwall shield-strata interactions[C]//Underground Coal Operators' Conference,Wollongong,2010:97-107. [20] SANDFORD J,MAHONEY S,CONOVER D P,et al.Shield monitoring to forecast severe face weighting at the South Bulga Colliery,NSW,Australia[C]//The 18st International Conference on Ground Control in Mining,Morgantown,1999:164-175. [21] DEB D.Development of the longwall strata control and maintenance system(LOSCOMS)[D].Tuscaloosa:The University of Alabama,1997. [22] 廉自生,袁祥,高飞,等.液压支架网络化智能感控方法[J].煤炭学报,2020,45(6):2078-2089.LIAN Zisheng,YUAN Xiang,GAO Fei,et al.Networked intelligent sensing method for powered support[J].Journal of China Coal Society,2020,45(6):2078-2089. [23] 张坤,廉自生,谢嘉成,等.基于多传感器数据融合的液压支架高度测量方法[J].工矿自动化,2017,43(9):65-69.ZHANG Kun,LIAN Zisheng,XIE Jiacheng,et al.Height measurement method of hydraulic support based on multi-sensor data fusion[J].Industry and Mine Automation,2017,43(9):65-69. [24] 葛世荣,张帆,王世博,等.数字孪生智采工作面技术架构研究[J].煤炭学报,2020,45(6):1925-1936.GE Shirong,ZHANG Fan,WANG Shibo,et al.Digital twin for smart coal mining workface:technological frame and construction[J].Journal of China Coal Society,2020,45(6):1925-1936. [25] 杨梦,陈宁,范誉航.煤矿事故案例存储与检索[J].煤炭科学技术,2021,49(9):103-109.YANG Meng,CHEN Ning,FAN Yuhang.Study on storage and retrieval of coal mine accident cases[J].Coal Science and Technology,2021,49(9):103-109. [26] 康红普,伊丙鼎,高富强,等.中国煤矿井下地应力数据库及地应力分布规律[J].煤炭学报,2019,44(1):23-33.KANG Hongpu,YI Bingding,GAO Fuqiang,et al.Database and characteristics of underground in-situ stress distribution in Chinese coal mines[J].Journal of China Coal Society,2019,44(1):23-33. [27] 庞义辉,王国法,任怀伟,等.一种工作面三向采动应力场的无损定量测试方法:CN201811172517.3[P].2019-08-27.PANG Yihui,WANG Guofa,REN Huaiwei,et al.A nondestructive quantitative testing method for three direction mining stress field of working face:CN201811172517.3[P].2019-08-27. [28] 庞义辉.超大采高液压支架与围岩的强度耦合关系[D].北京:煤炭科学研究总院,2018.PANG Yihui.Hydraulic support and surrounding rock strength coupling relationship in ultra large mining height face[D].Beijing:China Coal Research Institute,2018. [29] 庞义辉,王国法,李冰冰.深部采场覆岩应力路径效应与失稳过程分析[J].岩石力学与工程学报,2020,39(4):682-694.PANG Yihui,WANG Guofa,LI Bingbing.Stress path effect and instability process analysis of overlying strata in deep stopes[J].Chinese Journal of Rock Mechanics and Engineering,2020,39(4):682-694. [30] 文治国,侯刚,王彪谋,等.两柱掩护式液压支架姿态监测技术研究[J].煤矿开采,2015,20(4):49-51.WEN Zhiguo,HOU Gang,WANG Biaomou,et al.Attitude monitoring technology of two-prop shield powered support[J].Coal Mining Technology,2015,20(4):49-51. [31] 王国法,庞义辉.基于支架与围岩耦合关系的支架适应性评价方法[J].煤炭学报,2016,41(6):1348-1353.WANG Guofa,PANG Yihui.Shield-roof adaptability evaluation method based on coupling of parameters between shield and roof strata[J].Journal of China Coal Society,2016,41(6):1348-1353. [32] 王桃,刘晓文,乔欣,等.基于无线传感器网络的液压支架压力监测系统设计[J].工矿自动化,2014,40(6):7-10.WANG Tao,LIU Xiaowen,QIAO Xin,et al.Design of pressure monitoring system of hydraulic support based on wireless sensor network[J].Industry and Mine Automation,2014,40(6):7-10. [33] 任怀伟,赵国瑞,周杰,等.智能开采装备全位姿测量及虚拟仿真控制技术[J].煤炭学报,2020,45(3):956-971.REN Huaiwei,ZHAO Guorui,ZHOU Jie,et al.Key technologies of all position and orientation monitoring and virtual simulation and control for smart mining equipment[J].Journal of China Coal Society,2020,45(3):956-971. [34] 王继林,袁永,屠世浩,等.大采高综采采场顶板结构特征与支架合理承载[J].采矿与安全工程学报,2014,31(4):512-518.WANG Jilin,YUAN Yong,TU Shihao,et al.Roof structure characteristics in fully mechanized coalface with large mining height and reasonable loading of support[J].Journal of Mining & Safety Engineering,2014,31(4):512-518. [35] 鞠金峰,许家林,朱卫兵,等.7.0 m支架综采面矿压显现规律研究[J].采矿与安全工程学报,2012,29(3):344-350.JU Jinfeng,XU Jialin,ZHU Weibing,et al.Strata behavior of fully-mechanized face with 7.0 m height support[J].Journal of Mining & Safety Engineering,2012,29(3):344-350. [36] 高登彦,杨金楼.大柳塔煤矿52煤7 m大采高综采工作面支架工作阻力分析[J].中国矿压,2016,25(2):80-84.GAO Dengyan,YANG Jinlou.Shield resistance analysis of 7 m large mining height fully mechanized longwall face in 52 coal seam of Daliuta Coal Mine[J].China Mining Magazine,2016,25(2):80-84. [37] 庞义辉,王国法,张金虎,等.超大采高工作面覆岩断裂结构及稳定性控制技术[J].煤炭科学技术,2017,45(11):45-50.PANG Yihui,WANG Guofa,ZHANG Jinhu,et al.Overlying strata fracture structure and stability control technology for ultra large mining height working face[J].Coal Science and Technology,2017,45(11):45-50. [38] 庞义辉,王国法.大采高液压支架结构优化设计及适应性分析[J].煤炭学报,2017,42(10):2518-2527.PANG Yihui,WANG Guofa.Hydraulic support with large mining height structural optimal design and adaptability analysis[J].Journal of China Coal Society,2017,42(10):2518-2527. [39] 吴士良,杨路林.支架工作阻力大数据分析系统[J].工矿自动化,2017,43(11):86-89.WU Shiliang,YANG Lulin.Big data analysis system of working resistance of support[J].Industry and Mine Automation,2017,43(11):86-89. [40] 陆萍,王涛,韦跃,等.时间序列模型在桥梁健康监测数据预测中的应用[J].重庆科技学院学报(自然科学版),2018,20(6):75-79.LU Ping,WANG Tao,WEI Yue,et al.Application of time series model in the prediction of bridge health monitoring data[J].Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2018,20(6):75-79. [41] PANG Yihui,WANG Hongbo,ZHAO Jianjian,et al.Analysis and prediction of hydraulic support load based on time series data modeling[J].Geofluids,2020(1):1-15. [42] 庞义辉,王国法,巩师鑫,等.一种井工煤矿工作面液压支架压力智能预测方法:CN201910985765.8[P].2020-01-24.PANG Yihui,WANG Guofa,GONG Shixin,et al.An intelligent pressure prediction method for hydraulic support in coal mine working face:CN201910985765.8[P].2020-01-24.
点击查看大图
计量
- 文章访问数: 191
- HTML全文浏览量: 24
- PDF下载量: 24
- 被引次数: 0