留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻量化煤矸目标检测方法研究

杜京义 史志芒 郝乐 陈瑞

杜京义, 史志芒, 郝乐, 等. 轻量化煤矸目标检测方法研究[J]. 工矿自动化, 2021, 47(11): 119-125. doi: 10.13272/j.issn.1671-251x.2021040029
引用本文: 杜京义, 史志芒, 郝乐, 等. 轻量化煤矸目标检测方法研究[J]. 工矿自动化, 2021, 47(11): 119-125. doi: 10.13272/j.issn.1671-251x.2021040029
DU Jingyi, SHI Zhimang, HAO Le, et al. Research on lightweight coal and gangue target detection method[J]. Industry and Mine Automation, 2021, 47(11): 119-125. doi: 10.13272/j.issn.1671-251x.2021040029
Citation: DU Jingyi, SHI Zhimang, HAO Le, et al. Research on lightweight coal and gangue target detection method[J]. Industry and Mine Automation, 2021, 47(11): 119-125. doi: 10.13272/j.issn.1671-251x.2021040029

轻量化煤矸目标检测方法研究

doi: 10.13272/j.issn.1671-251x.2021040029
基金项目: 

工信部物联网集成创新与融合应用项目(工信部科函〔2018〕470号)。

详细信息
    作者简介:

    杜京义(1965-),男,山东淄博人,教授,研究方向为模式识别与神经网络,E-mail:517571853@qq.com。

  • 中图分类号: TD67

Research on lightweight coal and gangue target detection method

  • 摘要: 针对目前基于深度学习的煤矸目标检测方法精度低、实时性差、小目标易漏检等问题,采用轻量化网络、自注意力机制、锚框优化方法对SSD模型进行改进,构建Ghost-SSD模型,进而提出一种轻量化煤矸目标检测方法。Ghost-SSD模型以SSD模型为基础框架,采用GhostNet轻量化特征提取网络代替主体网络层VGG16,以提高煤矸目标检测速度;针对浅层特征图中包含较多背景噪声及语义信息不足问题,引入自注意力模块对浅层特征图进行特征增强,提高对前景区域的关注度,并采用扩张卷积增大浅层特征图的感受野,丰富浅层特征图的语义信息;采用K-means算法对锚框进行聚类,优化锚框尺寸设置,进一步提高煤矸目标检测精度。实验结果表明,基于Ghost-SSD模型进行煤矸目标检测时,平均精度均值较SSD模型提高3.6%,检测速度提高75帧/s,且检测精度与速度均优于Faster-RCNN,Yolov3模型,同时对煤矸小目标具有较好的检测效果。

     

  • [1] 商德勇,章林,牛艳奇,等.煤矸分拣机器人设计与关键技术分析[J/OL].煤炭科学技术:1-7[2021-04-08].http://kns.cnki.net/kcms/detail/11.2402.TD.20200616.1022.004.html.

    SHANG Deyong,ZHANG Lin,NIU Yanqi,et al.Design and key technology analysis of coal and gangue sorting robot[J/OL].Coal Science and Technology:1-7[2021-04-08].http://kns.cnki.net/kcms/detail/11.2402.TD.20200616.1022.004.html.
    [2] 郭永存,何磊,刘普壮,等.煤矸双能X射线图像多维度分析识别方法[J].煤炭学报,2021,46(1):300-309.

    GUO Yongcun,HE Lei,LIU Puzhuang,et al.Multi-dimensional analysis and recognition method of coal and gangue dual-energy X-ray images[J].Journal of China Coal Society,2021,46(1):300-309.
    [3] ROBBEN C,CONDORI P,PINTO A,et al.X-ray-transmission based ore sorting at the San Rafael tin mine[J].Minerals Engineering,2020,145:105870.
    [4] 杨慧刚,乔志敏,高绘彦,等.煤与矸石分选系统设计[J].工矿自动化,2018,44(8):91-95.

    YANG Huigang,QIAO Zhimin,GAO Huiyan,et al.Design of separation system of coal and gangue[J].Industry and Mine Automation,2018,44(8):91-95.
    [5] 李曼,段雍,曹现刚,等.煤矸分选机器人图像识别方法和系统[J].煤炭学报,2020,45(10):3636-3644.

    LI Man,DUAN Yong,CAO Xiangang,et al.Image identification method and system for coal and gangue sorting robot[J].Journal of China Coal Society,2020,45(10):3636-3644.
    [6] 薛光辉,李秀莹,钱孝玲,等.基于随机森林的综放工作面煤矸图像识别[J].工矿自动化,2020,46(5):57-62.

    XUE Guanghui,LI Xiuying,QIAN Xiaoling,et al.Coal-gangue image recognition in fully-mechanized caving face based on random forest[J].Industry and Mine Automation,2020,46(5):57-62.
    [7] DOU Dongyang,ZHOU Deyang,YANG Jianguo,et al.Coal and gangue recognition under four operating conditions by using image analysis and Relief-SVM[J].International Journal of Coal Preparation and Utilization,2018,40(7):473-482.
    [8] HOU Wei.Identification of coal and gangue by feed-forward neural network based on data analysis[J].International Journal of Coal Preparation and Utilization,2019,39(1):33-43.
    [9] DHILLON A,VERMA G K.Convolutional neural network: a review of models,methodologies and applications to object detection[J].Progress in Artificial Intelligence,2020,9(2):85-112.
    [10] 徐志强,吕子奇,王卫东,等.煤矸智能分选的机器视觉识别方法与优化[J].煤炭学报,2020,45(6):2207-2216.

    XU Zhiqiang,LYU Ziqi,WANG Weidong,et al.Machine vision recognition method and optimization for intelligent separation of coal and gangue[J].Journal of China Coal Society,2020,45(6):2207-2216.
    [11] PU Yuanyuan,APEL D B,SZMIGIEL A,et al.Image recognition of coal and coal gangue using a convolutional neural network and transfer learning[J].Energies,2019,12(9):1-11.
    [12] LI Dongjun,ZHANG Zhenxin,XU Zhihua,et al.An image-based hierarchical deep learning framework for coal and gangue detection[J].IEEE Access,2019,7:184686-184699.
    [13] 王鹏,曹现刚,夏晶,等.基于机器视觉的多机械臂煤矸石分拣机器人系统研究[J].工矿自动化,2019,45(9):47-53.

    WANG Peng,CAO Xiangang,XIA Jing,et al.Research on multi-manipulator coal and gangue sorting robot system based on machine vision[J].Industry and Mine Automation,2019,45(9):47-53.
    [14] LYU Ziqi,WANG Weidong,XU Zhiqiang,et al.Cascade network for detection of coal and gangue in the production context[J].Powder Technology,2021,377:361-371.
    [15] LIU Wei,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision,Amsterdam,2016:21-37.
    [16] REN Shaoqing,HE Kaiming,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149.
    [17] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once: unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
    [18] LUO Wenjie,LI Yujia,URTASUN R,et al.Understanding the effective receptive field in deep convolutional neural networks[Z/OL].arXiv Preprint,arXiv:1701.04128,2017.
    [19] HAN Kai,WANG Yunhe,TIAN Qi,et al.Ghostnet:more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:1580-1589.
    [20] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,2016:770-778.
    [21] ZHANG Han,GOODFELLOW I,METAXAS D,et al.Self-attention generative adversarial networks[C]//International Conference on Machine Learning,Long Beach,2019:7354-7363.
    [22] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-cam:visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision,Long Beach,2017:618-626.
  • 加载中
计量
  • 文章访问数:  152
  • HTML全文浏览量:  12
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-11
  • 修回日期:  2021-11-07
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回