留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于条件变分自编码器的井下配电室巡检行为检测

党伟超 史云龙 白尚旺 高改梅 刘春霞

党伟超, 史云龙, 白尚旺, 等. 基于条件变分自编码器的井下配电室巡检行为检测[J]. 工矿自动化, 2021, 47(12): 98-105. doi: 10.13272/j.issn.1671-251x.2021030087
引用本文: 党伟超, 史云龙, 白尚旺, 等. 基于条件变分自编码器的井下配电室巡检行为检测[J]. 工矿自动化, 2021, 47(12): 98-105. doi: 10.13272/j.issn.1671-251x.2021030087
DANG Weichao, SHI Yunlong, BAI Shangwang, et al. Inspection behavior detection of underground power distribution room based on conditional variational auto-encoder[J]. Industry and Mine Automation, 2021, 47(12): 98-105. doi: 10.13272/j.issn.1671-251x.2021030087
Citation: DANG Weichao, SHI Yunlong, BAI Shangwang, et al. Inspection behavior detection of underground power distribution room based on conditional variational auto-encoder[J]. Industry and Mine Automation, 2021, 47(12): 98-105. doi: 10.13272/j.issn.1671-251x.2021030087

基于条件变分自编码器的井下配电室巡检行为检测

doi: 10.13272/j.issn.1671-251x.2021030087
基金项目: 

山西省自然科学基金项目(201901D111266,201901D111252)

太原科技大学博士科研启动基金项目(20202063)。

详细信息
    作者简介:

    党伟超(1974-),男,山西运城人,副教授,博士,主要研究方向为智能计算、软件可靠性,E-mail:dangweichao@tyust.edu.cn。

  • 中图分类号: TD611

Inspection behavior detection of underground power distribution room based on conditional variational auto-encoder

  • 摘要: 现有井下配电室巡检行为检测方法的研究重点在于视频动作的分类,但在实际应用中,对于端到端的视频检测任务,不仅需要识别巡检动作的类别,还需要预测巡检动作发生的开始时间和结束时间。且现有基于监督学习的研究方法训练网络时需要标注视频的每一帧,存在数据集制作繁琐、训练时间较长等问题,基于弱监督学习的研究方法也依赖视频分类模型,导致在没有视频帧级别标注的条件下很难区分动作帧和背景帧。针对以上问题,提出了一种基于条件变分自编码器的弱监督井下配电室巡检行为检测模型。该模型主要由判别注意力模型和生成注意力模型2个部分组成,将井下配电室巡检行为检测分为巡检动作的分类和定位2种任务。首先利用特征提取模型分别提取出井下配电室监控视频的RGB特征与光流特征;然后将获取到的RGB特征与光流特征输入注意力模块中进行训练,得到特征帧的注意力,通过判别注意力模型得到软分类,根据注意力的得分情况判断出动作帧和背景帧;最后对判别注意力模型的输出进行后处理,输出视频中包含巡检动作的时间区间、动作标签及置信度,即完成了巡检动作的分类及定位。为了提高定位任务的精度,加入基于条件变分自编码器的生成注意力模型,利用条件变分自编码器与解码器的生成对抗对视频的潜在特征进行学习。利用井下配电室监控视频,将巡检行为分为站立检测、下蹲检测、来回走动、站立记录和坐下记录,制作了巡检行为数据集进行实验,结果表明:基于条件变分自编码器的巡检行为检测模型可同时完成巡检行为分类和定位任务,在THUMOS14数据集上mAP@0.5达到17.0%,在自制的巡检行为数据集上mAP@0.5达到24.0%,满足井下配电室巡检行为检测要求。

     

  • [1] 党伟超,张泽杰,白尚旺,等.基于改进双流法的井下配电室巡检行为识别[J].工矿自动化, 2020,46(4):75-80.

    DANG Weichao,ZHANG Zejie,BAI Shangwang,et al.Inspection behavior recognition of underground power distribution room based on improved two-stream CNN method[J].Industry and Mine Automation,2020,46(4):75-80.
    [2] 杨清翔,吕晨,冯晨晨,等.煤矿井下行人检测算法[J].工矿自动化,2020,46(1):80-84.

    YANG Qingxiang,LYU Chen,FENG Chenchen,et al.Pedestrian detection algorithm of coal mine underground[J].Industry and Mine Automation,2020,46(1):80-84.
    [3] 莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967-973.

    MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13(6):967-973.
    [4] 王琳,卫晨,李伟山,等.结合金字塔池化模块的YOLOv2的井下行人检测[J].计算机工程与应用,2019,55(3):133-139.

    WANG Lin,WEI Chen,LI Weishan,et al.Pedestrian detection based on YOLOv2 with pyramid pooling module in underground coal mine[J].Computer Engineering and Applications,2019,55(3):133-139.
    [5] 李伟山,卫晨,王琳.改进的Faster RCNN煤矿井下行人检测算法[J].计算机工程与应用,2019,55(4):200-207.

    LI Weishan,WEI Chen,WANG Lin.Improved Faster RCNN approach for pedestrian detection in underground coal mine[J].Computer Engineering and Applications,2019,55(4):200-207.
    [6] 李现国,李斌,刘宗鹏,等.井下视频行人检测方法[J].工矿自动化,2020,46(2):54-58.

    LI Xianguo,LI Bin,LIU Zongpeng,et al.Underground video pedestrian detection method[J].Industry and Mine Automation,2020,46(2):54-58.
    [7] 王勇.煤矿井下人员视频图像识别跟踪的研究与应用[J].电子测量技术,2020,43(1):28-31.

    WANG Yong.Research and application of video image recognition and tracking for underground personnel in coal mine[J].Electronic Measurement Technology,2020,43(1):28-31.
    [8] ZHOU Bolei,KHOSLA A,LAPEDRIZA A,et al.Learning deep features for discriminative localization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:2921-2929.
    [9] WANG Limin,XIONG Yuanjun,LIN Dahua,et al.UntrimmedNets for weakly supervised action recognition and detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:6402-6411.
    [10] SINGH K K,YONG J L.Hide-and-seek:forcing a network to be meticulous for weakly-supervised object and action localization[C]//Proceedings of the IEEE International Conference on Computer Vision,Venice,2017:3524-3533.
    [11] ZHONG Jiaxing,LI Nannan,KONG Weijie,et al.Step-by-step erasion,one-by-one collection:a weakly supervised temporal action detector[C]//Proceedings of the 26th ACM International Conference on Multimedia,New York,2018:35-44.
    [12] JOAO C,ANDREW Z.Quo vadis,action recognition?a new model and the Kinetics dataset[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:4724-4733.
    [13] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems,New York,2017:6000-6010.
    [14] KINGMA D P,WELLING M.Auto-encoding variational Bayes[C]//Proceedings of the International Conference on Learning Representations,2013.
    [15] IDREES H,ZAMIR A R,JIANG Yugang,et al.The THUMOS challenge on action recognition for videos "in the wild"[J].Computer Vision and Image Understanding,2017,155:1-23.
  • 加载中
计量
  • 文章访问数:  155
  • HTML全文浏览量:  17
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 修回日期:  2021-09-25
  • 刊出日期:  2021-12-20

目录

    /

    返回文章
    返回