Similar simulation experiment of water loss and settlement in thick loose aquifer
-
摘要: 目前缺乏对厚松散含水层地质采矿条件下覆岩破断及变形规律的深入研究。以淮南矿区潘四东煤矿11111工作面为工程背景,构建相似材料模型,采用数字摄影测量提取位移法记录模型开挖过程中覆岩破断过程及覆岩变形情况。分析了含水层失水沉降原因:覆岩在W型剪切应力拱作用下形成2条纵向的主导水裂隙带,导水裂隙带的进一步发育引起含水层失水固结,在厚松散层重力作用下进一步压实,随着覆岩破断运动的加剧,在弯曲带和覆岩共同挤压下形成О型剪切应力拱,压缩薄层空间,导致地表下沉量增大。分析了失水状态下覆岩损伤情况:工作面开采工作完成且覆岩达到稳态后,前垮落角为57°,后垮落角为62°,导水裂隙带高度为63 m,开切眼及终采线上方覆岩在应力集中作用下断裂,产生纵向裂隙,开切眼及终采线上方垮落带区域内覆岩产生横向离层裂隙,纵向裂隙和横向离层裂隙加剧了覆岩与含水层间的水力联系。给出了失水状态下覆岩动态运动规律:随着开采工作面的推进,各观测线覆岩下沉量逐渐增大,接近开采工作面的观测线覆岩下沉量最大,工作面上方覆岩的观测线下沉量曲线走势基本类似且跳变一致,含水层上方的观测线下沉量曲线走势基本吻合且跳变同步,工作面上方与含水层上方的观测线下沉量跳变异步,表明含水层对覆岩移动变形具有重要作用。Abstract: The in-depth research on the breaking and deformation law of overburden rock under the geological and mining conditions of thick loose aquifer are lacking at present. Taking 11111 working face of Pansidong Coal Mine in Huainan mining area as the engineering background, the similar material model is constructed, and the digital photogrammetry extraction displacement method is used to record the overburden rock breaking process and overburden rock deformation during the model roadway heading. The causes of water loss and settlement of aquifer are analyzed. The overburden rocks form two main longitudinal diversion fissure zones under the action of W-type shear stress arch. The further development of the diversion fissure zone causes water loss and consolidation of the aquifer, and the aquifer is further compacted under the action of gravity of the thick loose layer. With the intensification of the overburden rock breaking movement, О type shear stress arch is formed under the joint extrusion of bending zone and overburden rock, which compresses the thin space and leads to the large amount of surface subsidence. The damage of overburden rock under water loss condition is analyzed. After the roadway heading work of the working face is completed and the overburden rock reaches a steady state, the front caving angle is 57°, the rear caving angle is 62°, and the height of the diversion fissure zone is 63 m. Under the action of stress concentration, the overburden rock above the open-cut hole and the stop-mining line is broken to produce longitudinal fissure, and the overburden rock in the area of the collapse zone above the open-cut hole and the stop-mining line produces lateral separation fissure. The longitudinal fissures and lateral separation fissures intensify the hydraulic connection between overburden rock and the aquifer. The dynamic movement law of overburden rock under water loss state is given. With the advance of mining face, the overburden settlement of each observation line increases gradually, and the overburden settlement of the observation line close to the working face is the largest. The trend of the subsidence curves of the observation lines in the overburden rock above the working face is basically similar, and the jump of the subsidence curves is consistent. The trend of the subsidence curves of the observation lines above the aquifer is basically consistent, and the jump of the subsidence curves is synchronous. The jump of the subsidence curves of observation lines in the overburden rock above the working face and the one of the observation line above the aquifer are asynchronous, indicating that the aquifer plays an important role in the movement and deformation of the overburden rock.
-
表 1 研究区地层结构
Table 1. A histogram of stratigraphic structure in the study area
界 系 统 组 厚度(m) 主要岩性 新生界 第四系 全新统 — 40~130 浅黄、灰黄色粘土夹砂层 更新统 第三系上 上新统 — 0~152 灰绿、浅黄,多为粘土夹杂砂层 中新统 第三系下 渐新统 — >205 浅灰、棕色砂泥岩互层,夹杂砂砾岩 始新统 中生界 白垩系 上统 — >647 紫红色粉、细砂岩,砂砾岩 下统 — 844 棕红粉砂岩、泥岩及细中粒砂岩 侏罗系 上统 — >637 凝灰质砂砾岩,凝灰岩和安山岩 三叠系 下统 — 316~446 紫红色砂泥岩 古生界 二叠系 上统 石千峰组 114~260 紫红杂色砂泥岩,夹石英砂岩及砂砾岩 上石盒子组 316~566 灰绿色和浅灰色砂岩,底为石英砂岩且为含煤层 下统 下石盒子组 106~265 灰色砂泥岩及其互层,底含粗砂岩,含煤层 山西组 52~88 上部细砂岩、粗砂岩,下部深灰色泥岩,含煤层 石炭系 上统 太原组 102~148 灰岩为主,夹泥岩及砂岩,含薄煤层 奥陶系 中下统 — 400 中厚层为白云岩及白云质灰岩,夹灰岩 寒武系 上统 土坝组 170~220 硅质结核白云岩,产Heleionellasp.化石 固山组 9~78 白云岩,竹叶状灰岩,鲕状灰岩。 中统 张夏组 146 鲕状灰岩,白云岩产Dameselluasp.化石 徐庄组 190 棕黄砂岩,夹页岩及石灰岩 毛庄组 152 多为砾状灰岩,鲕状灰岩和页岩 下统 馒头组 215 紫色页岩夹灰岩,产Redlichasp.化石 猴家山组 100~150 鲕状灰岩,孔洞灰岩和砂灰岩 凤台组 10~100 页岩,砾岩 上元古界 震旦系 徐淮群 九顶山组 117 白云岩,底部夹竹叶状灰岩 倪园组 92 上部含泥白云岩,夹黄绿色钙质页岩,下部硅质条带白云岩 四顶山组 137 厚层白云岩为主,产蠕形动物化石 九里桥组 119 泥灰岩,砂灰岩 四十里长山组 93 石英岩及钙质砂岩 青白口系 八公
山群刘老碑组 1050 页岩,泥灰岩,石英砂岩,底部铁质砂砾岩,含藻及疑源类化石 伍山组 张店组 下元古界 — — 凤阳群 1 171 千枚岩,白云岩,大理岩,白云质石英片岩,石英岩,含藻化石 上太古界 — — 五河群 >6 422 片麻岩,浅粒岩,变粒岩,斜长角闪岩互层,夹少量大理岩及磁 铁矿层,岩石混合岩化 -
[1] 谢和平, 吴立新, 郑德志. 2025 年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949-1960.XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949-1960. [2] 高永格, 牛矗, 张强, 等. 厚松散层下采煤地表沉陷特征研究[J]. 煤炭科学技术,2019,47(6):192-198.GAO Yongge, NIU Chu, ZHANG Qiang, et al. Study on surface subsidence characteristics of coal mining under thick loose layer[J]. Coal Science and Technology,2019,47(6):192-198. [3] 张海峰, 李文, 李少刚, 等. 浅埋深厚松散层综放工作面覆岩破坏监测技术[J]. 煤炭科学技术,2014,42(10):24-27.ZHANG Haifeng, LI Wen, LI Shaogang, et al. Research on technology of overlying strata failure monitoring in fully mechanized caving coal face with shallow and thick loose bed[J]. Coal Science and Technology,2014,42(10):24-27. [4] 陈俊杰, 邹友峰, 郭文兵. 厚松散层下下沉系数与采动程度关系研究[J]. 采矿与安全工程学报,2012,29(2):250-254. doi: 10.3969/j.issn.1673-3363.2012.02.018CHEN Junjie, ZOU Youfeng, GUO Wenbing. Study on the relationship between subsidence coefficient and mining degree under a thick alluvium stratum[J]. Journal of Mining & Safety Engineering,2012,29(2):250-254. doi: 10.3969/j.issn.1673-3363.2012.02.018 [5] 李新岭, 郭文兵, 赵高博. 巨厚松散层土体压缩特性对开采沉陷影响研究[J]. 中国安全科学学报,2018,28(7):135-141.LI Xinling, GUO Wenbing, ZHAO Gaobo. Study on influence of compression characteristics of super-thick alluvium on mining subsidence[J]. China Safety Science Journal,2018,28(7):135-141. [6] 许国胜, 许胜军, 李德海, 等. 赵固矿区厚松散层下开采地表移动特征实测研究[J]. 中国矿业, 2021, 30(5): 168-172.XU Guosheng, XU Shengjun, LI Dehai, et al. Field research on surface movement characteristic by coal mining under thick alluvium in Zhaogu mine area[J]China Mining Magazine, 2021, 30(5): 168-172. [7] 许国胜, 李德海, 侯得峰, 等. 厚松散层下开采地表动态移动变形规律实测及预测研究[J]. 岩土力学,2016,37(7):2056-2062.XU Guosheng, LI Dehai, HOU Defeng, et al. Measurement and prediction of the transient surface movement and deformation induced by mining under thick alluvium[J]. Rock and Soil Mechanics,2016,37(7):2056-2062. [8] 崔希民, 方志海, 左红飞, 等. 开采引起的含水层失水对地表下沉的影响[J]. 煤田地质与勘探,2000,28(5):47-48. doi: 10.3969/j.issn.1001-1986.2000.05.015CUI Ximin, FANG Zhihai, ZUO Hongfei, et al. De-watering effect of aquifer to surface subsidence[J]. Coal Geology & Exploration,2000,28(5):47-48. doi: 10.3969/j.issn.1001-1986.2000.05.015 [9] 崔希民, 邓喀中. 煤矿开采沉陷预计理论与方法研究评述[J]. 煤炭科学技术,2017,45(1):160-169.CUI Ximin, DENG Kazhong. Research review of predicting theory and method for coal mining subsidence[J]. Coal Science and Technology,2017,45(1):160-169. [10] 李春意, 郭增长. 含水松散层固结对地表沉陷影响的数值分析[J]. 河南理工大学学报(自然科学版),2012,31(1):48-53.LI Chunyi, GUO Zengzhang. Numerical analysis of water-bearing alluvium consolidation influence on surface subsidence[J]. Journal of Henan Polytechnic University(Natural Science),2012,31(1):48-53. [11] 张丁丁. 兖州矿区第四系厚松散层沉降特性研究[D]. 西安: 西安科技大学, 2015.ZHANG Dingding. Study on settlement characteristics of thick quaternary unconsolidated layer in Yanzhou mining area. [D]. Xi′an: Xi′an University of Science and Technology, 2015. [12] 张劲满. 厚松散层含水层失水开采条件下覆岩运动及地表移动规律研究[D]. 淮南: 安徽理工大学, 2019.ZHANG Jinman. Study on overburden movement and surface movement under water loss mining in thick loose aquifer[D]. Huainan: Anhui University of Science and Technology, 2019. [13] 杜锋, 白海波. 厚松散层薄基岩综放开采覆岩破断机理研究[J]. 煤炭学报,2012,37(7):1105-1110.DU Feng, BAI Haibo. Mechanism research of overlying strata activity with fully mechanized caving in thin bedrock with thick alluvium[J]. Journal of China Coal Society,2012,37(7):1105-1110. [14] 梁庆华, 温兴林, 何刚, 等. 黏土体失水引起的地表下沉计算方法研究[J]. 采矿与安全工程学报,2007,24(1):105-108. doi: 10.3969/j.issn.1673-3363.2007.01.023LIANG Qinghua, WEN Xinglin, HE Gang, et al. Study on calculation methods for surface subsidence caused by water loss of clay[J]. Journal of Mining & Safety Engineering,2007,24(1):105-108. doi: 10.3969/j.issn.1673-3363.2007.01.023 [15] 赵春虎, 靳德武, 王皓, 等. 榆神矿区中深煤层开采覆岩损伤变形与含水层失水模型构建[J]. 煤炭学报,2019,44(7):2227-2235.ZHAO Chunhu, JIN Dewu, WANG Hao, et al. Construction and application of overburden damage and aquifer water loss model in medium-deep buried coal seam mining in Yushen mining area[J]. Journal of China Coal Society,2019,44(7):2227-2235. [16] 徐良骥, 朱楠, 马荣振, 等. 厚松散承压含水层失水沉降模拟实验研究[J]. 采矿与安全工程学报,2015,32(5):821-826.XU Liangji, ZHU Nan, MA Rongzhen, et al. Water loss settlement simulation of thick unconsolidated confined aquifer layer[J]. Journal of Mining & Safety Engineering,2015,32(5):821-826. [17] 周大伟. 煤矿开采沉陷中岩土体的协同机理及预测[D]. 徐州: 中国矿业大学, 2014.ZHOU Dawei. The synergy mechanism between rock mass and soil in mining subsidence and its prediction[D]. Xuzhou: China University of Mining and Technology, 2014.