留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合轻量级网络和双重注意力机制的煤块检测方法

叶鸥 窦晓熠 付燕 邓军

叶鸥, 窦晓熠, 付燕, 等. 融合轻量级网络和双重注意力机制的煤块检测方法[J]. 工矿自动化, 2021, 47(12): 75-80. doi: 10.13272/j.issn.1671-251x.2021030075
引用本文: 叶鸥, 窦晓熠, 付燕, 等. 融合轻量级网络和双重注意力机制的煤块检测方法[J]. 工矿自动化, 2021, 47(12): 75-80. doi: 10.13272/j.issn.1671-251x.2021030075
YE Ou, DOU Xiaoyi, FU Yan, et al. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Industry and Mine Automation, 2021, 47(12): 75-80. doi: 10.13272/j.issn.1671-251x.2021030075
Citation: YE Ou, DOU Xiaoyi, FU Yan, et al. Coal block detection method integrating lightweight network and dual attention mechanism[J]. Industry and Mine Automation, 2021, 47(12): 75-80. doi: 10.13272/j.issn.1671-251x.2021030075

融合轻量级网络和双重注意力机制的煤块检测方法

doi: 10.13272/j.issn.1671-251x.2021030075
基金项目: 

陕西省自然科学基金项目(2018JQ5095);中国博士后科学基金项目(2020M673446)。

详细信息
    作者简介:

    叶鸥(1984-),男,陕西西安人,讲师,博士,主要研究方向为数据质量评价、视频检索、跨媒体语义解析和知识工程等,E-mail: oye0928@xust.edu.cn。

    通讯作者:

    窦晓熠(1996-),女,陕西咸阳人,硕士研究生,研究方向为计算机视觉,E-mail:823962874@qq.com。

  • 中图分类号: TD528.1

Coal block detection method integrating lightweight network and dual attention mechanism

  • 摘要: 针对现有煤矿井下带式输送机上煤块检测方法存在检测精度低、检测速度慢等问题,提出了一种融合轻量级网络和双重注意力机制的改进YOLOv4模型,并将其应用于带式输送机煤块检测。改进YOLOv4模型采用K-means聚类算法重新聚类先验框,使先验框更适应检测目标尺寸;通过引入MobileNet轻量级网络模型改进主干网络结构,以减少模型的参数量和计算量,提高检测速度;嵌入具有双重注意力机制的卷积块注意模块,用于提高模型对目标特征的敏感度,抑制干扰信息,提高目标检测精度。实验结果表明,改进YOLOv4模型能准确检测出不同尺寸的煤块;相较于YOLOv4模型,改进YOLOv4模型权重文件减少了36.46%,精确率提高了2.16%,召回率提高了20.4%,平均精度均值提高了14.37%,漏检率降低了16%,检测速度提升了19帧/s,处理单张图像耗时减少了1.31 s,提高了煤块检测精度和检测速度。

     

  • [1] 李占利,陈佳迎,李洪安,等.胶带输送机智能视频检测与预警方法[J].图学学报,2017,38(2):230-235.

    LI Zhanli,CHEN Jiaying,LI Hong'an,et al.Research on intelligent monitoring and warning method of belt conveyor[J].Journal of Graphics,2017,38(2):230-235.
    [2] 徐青云,赵耀江,李永明.我国煤矿事故统计分析及今后预防措施[J].煤炭工程,2015,47(3):80-82.

    XU Qingyun,ZHAO Yaojiang,LI Yongming.Statistical analysis and precautions of coal mine accidents in China[J].Coal Engineering,2015,47(3):80-82.
    [3] HU Chuan,CAO Huiping.Aspect-level influence discovery from graphs[J].IEEE Transactions on Knowledge & Data Engineering,2016,28(7):1635-1649.
    [4] WU Jianxin,YANG Hao.Linear regression-based efficient SVM learning for large-scale classification[J]. IEEE Transactions on Neural Networks & Learning Systems,2015,26(10):2357-2369.
    [5] FORSYTH D.Object detection with discriminatively trained part-based models[J].Computer,2014,47(2):6-7.
    [6] 贾建英,董安国.基于联合直方图的运动目标检测算法[J].计算机工程与应用, 2016,52(5):199-203.

    JIA Jianying,DONG Anguo.Moving target detection algorithm based on joint histogram[J].Computer Engineering and Applications,2016,52(5):199-203.
    [7] LE M,WOO B,JO K.A comparison of SIFT and Harris conner features for correspondence points matching[C]//The 17th Korea-Japan Joint Workshop on Frontiers of Computer Vision(FCV),Ulsan,2017:1-4.
    [8] 吕志强.复杂环境下煤矿皮带运输异物图像识别研究[D].徐州:中国矿业大学,2020.

    LYU Zhiqiang. Research on image recognition of foreign bodies in the process of coal mine belt transportation in complex environment[D].Xuzhou:China University of Mining and Technology,2020.
    [9] WANG Yuanbin,WANG Yujing,DANG Langfei.Video detection of foreign objects on the surface of belt conveyor underground coal mine based on improved SSD[J].Journal of Ambient Intelligence and Humanized Computing,2020(9):1-10.
    [10] 胡璟皓,高妍,张红娟,等.基于深度学习的带式输送机非煤异物识别方法[J].工矿自动化, 2021,47(6):57-62.

    HU Jinghao,GAO Yan,ZHANG Hongjuan,et al. Research on the identification method of non-coal foreign object of belt conveyor based on deep learning[J]. Industry and Mine Automation,2021,47(6):57-62.
    [11] 杜京义,陈瑞,郝乐,等.煤矿带式输送机异物检测[J].工矿自动化,2021,47(8):77-83.

    DU Jingyi,CHEN Rui,HAO Le,et al.Coal mine belt conveyor foreign object detection[J].Industry and Mine Automation,2021,47(8):77-83.
    [12] 张伟,庄幸涛,王雪力,等.DS-YOLO:一种部署在无人机终端上的小目标实时检测算法[J].南京邮电大学学报(自然科学版),2021,41(1):86-98.

    ZHANG Wei,ZHUANG Xingtao,WANG Xueli,et al. DS-YOLO:a real-time small object detection algorithm on UAVs[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2021,41(1):86-98.
    [13] MITTAL S. A survey on optimized implementation of deep learning models on the NVIDIA Jetson platform[J]. Journal of Systems Architecture, 2019, 97:428-442.
    [14] HOWARD A G,ZHU Menglong,CHEN Bo,et al.MobileNets efficient convolutional neural networks for mobile vision applications[EB/OL].(2018-01-22)[2021-03-23].https://arxiv.org/abs/1704.04861 arXiv:1704.04861.2017.
    [15] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//2018 ECCV Conference on Computer Vision,Berlin,2018:3-19.
    [16] KANUNGO T,MOUNT D,NETANYAHU N,et al.A local search approximation algorithm for k-means clustering[J].Computational Geometry,2004,28(23):89-112.
    [17] WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),Seattle,2020:1571-1580.
  • 加载中
计量
  • 文章访问数:  182
  • HTML全文浏览量:  23
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 修回日期:  2021-12-19
  • 刊出日期:  2021-12-20

目录

    /

    返回文章
    返回