留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Fast_YOLOv3算法的煤矿胶带运输异物检测

任国强 韩洪勇 李成江 尹燕芳

任国强, 韩洪勇, 李成江, 等. 基于Fast_YOLOv3算法的煤矿胶带运输异物检测[J]. 工矿自动化, 2021, 47(12): 128-133. doi: 10.13272/j.issn.1671-251x.2021030021
引用本文: 任国强, 韩洪勇, 李成江, 等. 基于Fast_YOLOv3算法的煤矿胶带运输异物检测[J]. 工矿自动化, 2021, 47(12): 128-133. doi: 10.13272/j.issn.1671-251x.2021030021
REN Guoqiang, HAN Hongyong, LI Chengjiang, et al. Foreign object detection in coal mine belt transportation based on Fast_YOLOv3 algorithm[J]. Industry and Mine Automation, 2021, 47(12): 128-133. doi: 10.13272/j.issn.1671-251x.2021030021
Citation: REN Guoqiang, HAN Hongyong, LI Chengjiang, et al. Foreign object detection in coal mine belt transportation based on Fast_YOLOv3 algorithm[J]. Industry and Mine Automation, 2021, 47(12): 128-133. doi: 10.13272/j.issn.1671-251x.2021030021

基于Fast_YOLOv3算法的煤矿胶带运输异物检测

doi: 10.13272/j.issn.1671-251x.2021030021
基金项目: 

国家自然科学基金资助项目(61572300);山东省高等学校科技计划资助项目(J18KA328);山东省重点研发计划项目(2016GGX105013);山东省安全生产科技项目(F2010-004)。

详细信息
    作者简介:

    任国强(1976-),男,山东莱州人,副教授,博士,主要从事煤矿图像处理与识别方面的研究工作,E-mail:renguoqiang@sdust.edu.cn。

  • 中图分类号: TD714

Foreign object detection in coal mine belt transportation based on Fast_YOLOv3 algorithm

  • 摘要: 现有煤矿胶带运输异物检测方法检测精度较低、检测速度较慢,YOLOv3算法有较快的检测速度和较高的检测精度,但其用于煤矿胶带运输异物检测时存在对小目标检测效果不佳、容易出现漏检和正负样本不均衡等情况。针对上述问题,设计了Fast_YOLOv3算法:通过改进先验框及边界框,以适应煤矿胶带运输小目标异物检测场景;增加反卷积网络,以提高小目标异物检测能力;引入Focal Loss改进损失函数中负样本置信度的交叉熵,解决正负样本数量不均衡问题,提高检测精度。设计了StiPic数据增强方法,对煤矿胶带运输图像进行预处理,以提高Fast_YOLOv3模型训练效率及对小目标异物的检测精度。实验及现场测试结果表明,Fast_YOLOv3算法对于胶带运输异物的平均检测精度达90.12%,平均检测时间为35 ms,对小目标异物的检出率达93.50%,满足胶带运输现场对异物检测精度和实时性的要求。

     

  • [1] 郜振国.煤矿井下运输异物检测关键技术研究[D].徐州:中国矿业大学,2018.

    GAO Zhenguo.Study on key technologies of foreign object detection in the coal mine transportation[D].Xuzhou:China University of Mining and Technology,2018.
    [2] 姚富光.智能高速在线异物识别分拣关键技术研究[D].重庆:重庆大学,2009. YAO Fuguang.Key technologies research on intelligent high-speed on-line foreign material recognition and sorting[D].Chongqing:Chongqing University,2009.
    [3] 吕志强.复杂环境下煤矿皮带运输异物图像识别研究[D].徐州:中国矿业大学,2020.

    LYU Zhiqiang.Research on image recognition of foreign bodies in the process of coal mine belt transportation in complex environment[D].Xuzhou:China University of Mining and Technology,2020.
    [4] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:580-587.
    [5] REN Shaoqing,HE Kaiming,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
    [6] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2015:779-788.
    [7] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:7263-7271.
    [8] REDMON J,FARHADI A.YOLOv3:an incremental improvement[C]//IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake,2018:1804-1808.
    [9] 马巧梅,王明俊,梁昊然.复杂场景下基于改进YOLOv3的车牌定位检测算法[J].计算机工程与应用,2021,57(7):198-208.

    MA Qiaomei,WANG Mingjun,LIANG Haoran.License plate location detection algorithm based on improved YOLOv3 in complex scenes[J].Computer Engineering and Applications,2021,57(7):198-208.
    [10] 卢官有,顾正弘.改进的YOLOv3安检包裹中危险品检测算法[J].计算机应用与软件,2021,38(1):197-204.

    LU Guanyou,GU Zhenghong.A dangerous goods detection algorithm based on improved YOLOv3[J].Computer Applications and Software,2021,38(1):197-204.
    [11] 阮祥伟,李华,余烨.基于改进YOLOv3的快速车标检测方法[J].合肥工业大学学报(自然科学版),2020,43(12):1608-1613.

    RUAN Xiangwei,LI Hua,YU Ye.A fast vehicle logo detection method based on improved YOLOv3[J].Journal of Hefei University of Technology(Natural Science),2020,43(12):1608-1613.
    [12] 许腾,唐贵进,刘清萍,等.基于空洞卷积和Focal Loss的改进YOLOv3算法[J].南京邮电大学学报(自然科学版),2020,40(6):100-108.

    XU Teng,TANG Guijin,LIU Qingping,et al.Improved YOLOv3 based on dilated convolution and Focal Loss[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2020,40(6):100-108.
    [13] 徐志强,吕子奇,王卫东,等.煤矸智能分选的机器视觉识别方法与优化[J].煤炭学报,2020,45(6):2207-2216.

    XU Zhiqiang,LYU Ziqi,WANG Weidong,et al.Machine vision recognition method and optimization for intelligent separation of coal and gangue[J].Journal of China Coal Society,2020,45(6):2207-2216.
    [14] 吴守鹏.基于机器视觉的运煤皮带异物识别方法研究[D].徐州:中国矿业大学,2019.

    WU Shoupeng.Research on detection method of foreign object on coal conveyor belt based on computer vision[D].Xuzhou:China University of Mining and Technology,2019.
  • 加载中
计量
  • 文章访问数:  341
  • HTML全文浏览量:  61
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-06
  • 修回日期:  2021-12-14
  • 刊出日期:  2021-12-20

目录

    /

    返回文章
    返回