Optimal arrangement of wind speed sensor based on directed path matrix method
-
摘要: 现有矿井风速传感器布置方法存在确定的传感器分支因风速小于传感器启动风速而无法精准测风,大多数方法需要列出多个矩阵、计算复杂,部分方法选择出的传感器位置不合理等问题。为了实现矿井的无盲区全覆盖风量监测,用最少的风速传感器监测所有巷道的风量变化,采用有向通路矩阵分析传感器分支的覆盖范围,提出了基于有向通路矩阵法的风速传感器最优布置方法。该方法根据通风网络图的风流方向确定唯一的有向通路矩阵,进而确定分支的覆盖范围,选取覆盖范围最大的分支确定风速传感器的位置。实例结果表明:基于有向通路矩阵法的风速传感器最优布置方法可以实现矿井的无盲区全覆盖风量监测,而且传感器数量小于等于独立有向通路的数量;计算分析结果表明:按照该方法布置传感器,存在一个传感器分支有6%的测量误差时,对通风网络影响度最低为0.52,对其他分支的影响度最低为0,并且计算误差随着传感器数量增加而减小;若要使传感器分支误差对通风网络的影响度小于1,则应布置12个以上的风速传感器。
-
关键词:
- 矿井通风 /
- 风速传感器 /
- 有向通路矩阵 /
- 最优布置 /
- 无盲区全覆盖风量监测
Abstract: The existing mine wind speed sensor arrangement methods have problems as follows. The determined sensor branch cannot measure the wind speed accurately because the wind speed is smaller than the sensor start wind speed. Most of the methods need to be listed multiple matrices and the calculation is complicated. Moreover, the sensor positions selected by some methods are unreasonable. In order to achieve mine full coverage air volume monitoring without blind area, and to monitor the air volume variation in all roadways with the minimum number of wind speed sensors, the coverage of sensor branches is analyzed by using the directed path matrix, and the optimal arrangement of wind speed sensors based on the directed path matrix method is proposed. This method determines the unique directed path matrix based on the wind flow direction of the ventilation network diagram, determines the coverage of the branches, and selects the branch with the largest coverage to determine the position of the wind speed sensor. The results show that the optimal arrangement of wind speed sensors based on directed path matrix method can achieve mine full coverage air volume monitoring without blind area, and the number of sensors is less than or equal to the number of independent directed paths. Calculation analysis shows that when sensors are arranged according to this method, there is a measurement error of 6% in one sensor branch, the lowest impact on the ventilation network is 0.52, and the lowest impact on other branches is 0. Moreover, the calculation error decreases as the number of sensors increases. If the impact of sensor branch error on the ventilation network is controlled to be less than 1, more than 12 wind speed sensors should be arranged.
点击查看大图
计量
- 文章访问数: 114
- HTML全文浏览量: 11
- PDF下载量: 7
- 被引次数: 0