改进的井下人员定位PDR算法研究

孙延鑫, 毛善君, 苏颖, 杨梦

孙延鑫,毛善君,苏颖,等.改进的井下人员定位PDR算法研究[J].工矿自动化,2021,47(1):43-48.. DOI: 10.13272/j.issn.1671-251x.2020080086
引用本文: 孙延鑫,毛善君,苏颖,等.改进的井下人员定位PDR算法研究[J].工矿自动化,2021,47(1):43-48.. DOI: 10.13272/j.issn.1671-251x.2020080086
SUN Yanxin, MAO Shanjun, SU Ying, YANG Meng. Research on improved PDR algorithm for underground personnel positioning[J]. Journal of Mine Automation, 2021, 47(1): 43-48. DOI: 10.13272/j.issn.1671-251x.2020080086
Citation: SUN Yanxin, MAO Shanjun, SU Ying, YANG Meng. Research on improved PDR algorithm for underground personnel positioning[J]. Journal of Mine Automation, 2021, 47(1): 43-48. DOI: 10.13272/j.issn.1671-251x.2020080086

改进的井下人员定位PDR算法研究

基金项目: 

国家重点研发计划资助项目(2016YFC0801800)。

详细信息
  • 中图分类号: TD67

Research on improved PDR algorithm for underground personnel positioning

  • 摘要: 传统的行人航位推算(PDR)算法用于井下人员定位时,因步频检测、步长估计和航向估计阶段的姿态累计误差导致定位误差逐渐增大,而常用的零速校正、航向漂移消除、步态信号优化等误差修正方法无法改变PDR算法的固有缺陷,定位精度有待提高。提出采用改进的峰值检测法实现PDR算法中步频检测,基于深度循环神经网络(RNN)实现步长估计。将改进的PDR算法用于井下人员定位:首先采用手机加速度传感器、陀螺仪、磁力计获取行人运动数据;然后采用改进的峰值检测法获取固定时间间隔内的平均步频,与时间间隔、加速度及加速度方差作为特征输入训练后的深度RNN模型进行步长估计;最后结合估计的航向角预测人员当前位置。试验结果表明,改进的井下人员定位PDR算法对测试集数据的预测相对误差为5.9%,对实际测试路线的定位相对误差为1.6%~3.9%,小于传统PDR算法定位误差,有效提高了井下人员定位精度。
    Abstract: As the traditional pedestrian dead reckoning (PDR) algorithm being used for underground personnel positioning, the positioning error gradually increases due to the cumulative error of the step frequency detection, step length estimation and heading estimation phases. Moreover, the commonly used error correction methods such as zero speed correction, heading drift elimination and gait signal optimization cannot change the inherent defects of the PDR algorithm, and the positioning accuracy needs to be improved. It is proposed to use an improved peak detection method to achieve step frequency detection in the PDR algorithm, and to achieve step length estimation based on a deep recurrent neural network (RNN). The improved PDR algorithm is used for underground personnel positioning. Firstly, cell phone accelerometer, gyroscope and magnetometer are used to obtain pedestrian movement data. Secondly, the improved peak detection method is used to obtain the average step frequency in a fixed time interval. The average step frequency, the time interval, acceleration and acceleration variance are used as features to be input to the trained deep RNN model for step length estimation. Finally, the estimated heading angle is added to predict the current position of the personnel. The experimental results show that the improved PDR algorithm for underground personnel positioning has a relative error of 5.9% in predicting the test set data and has a relative error of 1.6%-3.9% in positioning the actual test route. The relative error is smaller than the positioning error of the traditional PDR algorithm and the proposed PDR algorithm has improved the accuracy of underground personnel positioning effectively.
  • 期刊类型引用(9)

    1. 罗珊珊,何泽家. 基于粒子滤波泰勒算法的变电站人员定位跟踪系统. 微型电脑应用. 2024(03): 102-107+111 . 百度学术
    2. 李飞,潘红光,魏绪强,陈海舰,郭齐,白俊明. 基于PDR算法与伪平面技术的井下人员定位方法研究. 西安科技大学学报. 2024(03): 587-596 . 百度学术
    3. 王泰基. 基于生成对抗网络的井下人员步长估计方法. 工矿自动化. 2024(06): 103-111 . 本站查看
    4. 万蓬勃,李学青,汤运启. 一种改进的行人航迹推算算法研究. 电子测量技术. 2024(11): 69-77 . 百度学术
    5. 李海川,贺星亮,贾仟国,李利. 基于S3DD-YOLOv8n的矿工行为检测算法. 矿业安全与环保. 2024(05): 96-104 . 百度学术
    6. 崔丽珍,张清宇,郭倩倩,马宝良. 基于CNN-LSTM的井下人员行为模式识别模型. 无线电工程. 2023(06): 1375-1381 . 百度学术
    7. 卫庆芳,陈勇,薛文军,马文秀,裴科科. 基于室内定位的改进PDR算法研究. 火力与指挥控制. 2023(04): 102-107 . 百度学术
    8. 郭倩倩,崔丽珍,杨勇,赫佳星,史明泉. 基于LSTM个性化步长估计的井下人员精准定位PDR算法. 工矿自动化. 2022(01): 33-39 . 本站查看
    9. 李自森,毛馨凯,王洪亮. 选煤厂智能照明控制. 工矿自动化. 2022(S1): 124-125+132 . 本站查看

    其他类型引用(12)

计量
  • 文章访问数:  98
  • HTML全文浏览量:  10
  • PDF下载量:  19
  • 被引次数: 21
出版历程
  • 刊出日期:  2021-01-19

目录

    /

    返回文章
    返回