Research on intelligent visual obstacle avoidance of underground mobile robot
-
摘要: 针对现有井下移动机器人避障方法在面对井下复杂障碍物时不能准确检测障碍物位置信息,对井下非线性障碍物不能准确进行避障控制等问题,提出了一种基于模糊控制的井下移动机器人智能视觉避障方法。首先采用双目立体视觉模组作为障碍物检测传感器,感知井下环境信息,实时检测障碍物分布情况,并构建占据栅格地图。然后通过八叉树结构模型构建三维点云,使用树状结构对点云数据进行结构化描述,并将其映射到占据栅格地图中,得到障碍物的区域分布情况。最后采用模糊控制策略对实时检测到的障碍物在占据栅格地图中的分布情况进行处理,将当前时刻障碍物在占据栅格地图中的分布情况和移动机器人运行速度作为模糊控制器的输入变量,通过模糊控制算法计算下一时刻移动机器人的转向角度和加速度,从而实现井下移动机器人的智能避障控制。根据移动机器人实际占据空间,设计外接包围盒进一步稳定控制算法,结合避障策略进行智能避障,避免移动机器人与障碍物发生碰撞。实验结果表明,该方法能够准确对井下障碍物分布情况进行描述,使移动机器人能够根据所设计的模糊控制规则准确自主地进行避障操作,从而实现自适应运动。Abstract: In view of problems that existing obstacle avoidance methods of underground mobile robot cannot accurately detect obstacle position information when facing complex obstacles and is inability to perform accurate obstacle avoidance control for the underground nonlinear obstacles, an intelligent visual obstacle avoidance method of underground mobile robot based on fuzzy control was proposed. First, binocular stereo vision module is used as obstacle detection sensor to perceive underground environment information, detect distribution of obstacles in real time, and construct occupation grid map. Then, the octree structure model is used to construct three-dimensional point cloud, and the tree structure is used to describe point cloud data structurally, which is mapped to the occupation grid map to obtain regional distribution of obstacles. Finally, a fuzzy control strategy is used to process distribution of obstacles detected in real time in the occupation grid map, and distribution of obstacles in the occupation grid map at the current moment and the running speed of the mobile robot are used as input variables of the fuzzy controller. The fuzzy control algorithm is used to calculate steering angle and acceleration of the mobile robot at the next moment, so as to realize intelligent obstacle avoidance control of the underground mobile robot. According to actual space occupied by the mobile robot, an external bounding box is designed to further stabilize control algorithm, and the obstacle avoidance strategy is combined to perform intelligent obstacle avoidance to avoid collision between mobile robot and obstacle. The experimental results show that the method can accurately describe distribution of underground obstacles, and enable the mobile robot to avoid obstacles accurately and autonomously according to the designed fuzzy control rules, so as to realize adaptive movement.
-
-
期刊类型引用(8)
1. 张新磊,谢翠娟,许俊锋. 机器人自主探索规划方法和系统设计. 计算机与数字工程. 2024(10): 2908-2913+2959 . 百度学术
2. 朱雷,闯喜宏,李磊,梁秋祥,魏铭毅. 输煤廊道巡检机器人智能避障控制方法设计. 自动化与仪器仪表. 2023(07): 210-213+218 . 百度学术
3. 郭爱军,刘建宇,郑安. 基于多传感器信息融合灭火机器人避障策略. 煤炭技术. 2022(04): 201-203 . 百度学术
4. 张燕. 基于模糊控制的智能移动机器人最优避障路线生成系统. 机械设计与制造工程. 2022(04): 86-90 . 百度学术
5. 杨春雨,张鑫. 煤矿机器人环境感知与路径规划关键技术. 煤炭学报. 2022(07): 2844-2872 . 百度学术
6. 岳仍瑞. 基于概率论的机器人避障方案规划. 信息记录材料. 2021(01): 178-179 . 百度学术
7. 刘曦,柳文轩,阿丽米热·阿布来提,麦吾兰·伊力哈木. 双目避障系统在桥式起重机上的应用. 现代制造技术与装备. 2021(10): 95-97 . 百度学术
8. 袁晓明,郝明锐. 煤矿无轨辅助运输无人驾驶关键技术与发展趋势研究. 智能矿山. 2020(01): 89-97 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 100
- HTML全文浏览量: 13
- PDF下载量: 20
- 被引次数: 9