基于Q-learning模型的智能化放顶煤控制策略

李庆元, 杨艺, 李化敏, 费树岷

李庆元 ,杨艺 ,李化敏,等.基于Q-learning模型的智能化放顶煤控制策略[J].工矿自动化,2020,46(1):72-79.. DOI: 10.13272/j.issn.1671-251x.2019110001
引用本文: 李庆元 ,杨艺 ,李化敏,等.基于Q-learning模型的智能化放顶煤控制策略[J].工矿自动化,2020,46(1):72-79.. DOI: 10.13272/j.issn.1671-251x.2019110001
LI Qingyuan, YANG Yi, LI Huamin, FEI Shumin. Intelligent control strategy for top coal caving based on Q-learning model[J]. Journal of Mine Automation, 2020, 46(1): 72-79. DOI: 10.13272/j.issn.1671-251x.2019110001
Citation: LI Qingyuan, YANG Yi, LI Huamin, FEI Shumin. Intelligent control strategy for top coal caving based on Q-learning model[J]. Journal of Mine Automation, 2020, 46(1): 72-79. DOI: 10.13272/j.issn.1671-251x.2019110001

基于Q-learning模型的智能化放顶煤控制策略

基金项目: 

国家重点研发计划项目(2018YFC0604502)

河南省高等学校重点科研项目(19A413008,17A480007)

河南省科技项目(192102210100,172102210270)

详细信息
  • 中图分类号: TD823.97

Intelligent control strategy for top coal caving based on Q-learning model

  • 摘要: 传统的综放工作面放顶煤控制存在顶煤采出率低、出煤含矸率高等问题,而现有智能决策方法又存在建模困难、学习样本难以获取等障碍。针对上述问题,在液压支架放煤口动作决策过程中引入强化学习思想,提出一种基于Q-learning模型的智能化放顶煤控制策略。以最大化放煤效益为主要目标,结合顶煤放出体实时状态特征及顶煤动态赋存状态,采用基于Q-learning的放顶煤动态决策算法,在线生成多放煤口实时动作策略,优化多放煤口群组协同放煤过程,合理平衡顶煤采出率、出煤含矸率的关系。仿真和对比分析结果表明,该控制策略的顶煤平均采出率为91.24%,比传统“见矸关窗”的放煤方法提高约15.8%;平均全局奖赏值为685,比传统放煤方法提高约11.2%。该控制策略可显著减少混矸、夹矸等现象对放煤过程的影响,提高顶煤放出效益,减少煤炭资源浪费。
    Abstract: Traditional top coal caving control on fully mechanized caving face has problems of low top coal recovery ratio and high gangue proportion,and existing intelligent decision-making methods have obstacles such as difficulty in modeling and obtaining learning samples. In view of above problems,the idea of reinforcement learning was introduced into the decision-making process of coal outlet of hydraulic support,and an intelligent control strategy for top coal caving based on Q-learning model was proposed.With the main goal of maximizing the benefits of coal caving combined with real-time state characteristics of top coal release and dynamic occurrence status of top coal,a dynamic decision-making algorithm based on Q-learning is used to generate real-time action strategy of multiple coal outlets online, and optimize cooperative coal caving process of multiple coal outlets,reasonably balance relationship between top coal recovery ratio and gangue proportion. The results of simulation and comparative analysis show that the average recovery ratio of top coal of the proposed control strategy is 91.24%,which is about 15.8% higher than that of the traditional coal caving method; the average global reward value is 685,which is about 11.2% higher than that of the traditional coal caving method. The proposed control strategy can significantly reduce the impact of coal and gangue mixed phenomena on the coal caving process,improve efficiency of top coal discharge,and reduce waste of coal resources.
  • 期刊类型引用(12)

    1. 庞义辉,关书方,姜志刚,白云,李鹏. 综放工作面围岩控制与智能化放煤技术现状及展望. 工矿自动化. 2024(09): 20-27 . 本站查看
    2. 杨艺,王圣文,崔科飞,费树岷. 基于模糊深度Q网络的放煤智能决策方法. 工矿自动化. 2023(04): 78-85 . 本站查看
    3. 杨艺,高阳,罗开成,王科平,费树岷. 基于YADE的综放工作面进刀放煤三维仿真. 煤矿安全. 2022(01): 167-173 . 百度学术
    4. 刘军锋,高亮亮,尹春雷. 智能放煤技术在某矿综放工作面的研究与应用. 煤炭技术. 2022(02): 58-60 . 百度学术
    5. 罗开成,高阳,杨艺,常亚军,袁瑞甫. 基于均值偏差奖赏函数的放煤口控制策略研究. 煤炭工程. 2022(09): 105-111 . 百度学术
    6. 杨艺,李庆元,李化敏,李东印,杨延麟,费树岷. 基于批量式强化学习的群组放煤智能决策研究. 煤炭科学技术. 2022(10): 188-197 . 百度学术
    7. 聂天文,韩金博. 倾斜特厚煤层工作面初次放顶方案设计. 陕西煤炭. 2021(03): 101-105 . 百度学术
    8. 王启鑫. 智能化放顶煤开采的精确放煤控制技术. 当代化工研究. 2021(14): 67-68 . 百度学术
    9. 高有进,杨艺,常亚军,张幸福,李国威,连东辉,崔科飞,武学艺,魏宗杰. 综采工作面智能化关键技术现状与展望. 煤炭科学技术. 2021(08): 1-22 . 百度学术
    10. 李伟. 综放开采智能化控制系统研发与应用. 煤炭科学技术. 2021(10): 128-135 . 百度学术
    11. 张学亮,刘清,郎瑞峰,邵斌,吴少伟. 厚煤层智能放煤工艺及精准控制关键技术研究. 煤炭工程. 2020(09): 1-6 . 百度学术
    12. 李长营. 综采放顶煤工艺参数仿真优化. 当代化工研究. 2020(18): 144-145 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  98
  • HTML全文浏览量:  12
  • PDF下载量:  20
  • 被引次数: 17
出版历程
  • 刊出日期:  2020-01-19

目录

    /

    返回文章
    返回