Bearing residual life prediction based on principal component feature fusion and SVM
-
摘要: 为解决采用单一特征量预测轴承剩余寿命误差较大、有限数据样本条件下轴承剩余寿命难以估算的问题,提出了一种基于主元特征融合和支持向量机(SVM)的轴承剩余寿命预测方法。该方法采集振动加速度信号构建数据样本,提取有效值、峰值、小波熵等表征轴承退化趋势的特征指标;采用主元分析融合多个特征指标,消除特征间的冗余和相关性,构造出相对多特征的退化特征量;将退化特征量输入SVM模型中进行轴承剩余寿命预测。现场工程应用结果表明,基于主元特征融合和SVM的轴承剩余寿命预测方法可在小样本条件下筛选出包含信号绝大部分信息的主元,从而在保证预测精度的同时,减少了计算量。Abstract: In order to solve the problem that using single feature quantity for bearing residual life prediction had large error and it was difficult to estimate bearing residual life under the condition of limited data samples, a bearing residual life prediction method based on principal component feature fusion and support vector machine(SVM) was proposed. This method collects data samples of vibration acceleration signals and extracts the characteristic indexes such as RMS, peak value and wavelet entropy to characterize the degradation trend of bearings. The principal component analysis is used to fuse multiple feature indexs to eliminate the redundancy and correlation between features, and construct regressive feature quantities with relative multi-feature; the regressive feature quantities are input into SVM model for bearing residual life prediction. The field engineering application results show that the bearing residual life prediction method based on principal component feature fusion and SVM can screen out the principal components which contain most of the information under small sample condition, thus reducing the calculation amount while ensuring the prediction accuracy.
点击查看大图
计量
- 文章访问数: 85
- HTML全文浏览量: 9
- PDF下载量: 9
- 被引次数: 0