Research on application of fast roaming and Mesh network technology of WiFi communication on fully mechanized coal mining face
-
摘要: 针对目前对WiFi通信在综采工作面特定环境下的应用研究较少的问题,结合无线信号空间传播理论分析了WiFi信号在综采工作面的传播特性,分析结果表明:在综采工作面,WiFi信号的传播受到较大影响,尤其是信号覆盖范围明显减小;在综采工作面WiFi无线信号传播符合对数距离路径损耗模型。根据综采工作面的空间布局特点,采用快速漫游和Mesh网络技术构建了无死区、全覆盖的综采工作面WiFi通信网络优选技术方案。测试结果表明,该方案可解决采煤机机载视频通信难题,实现了WiFi网络快速漫游功能,可有效保证移动终端的应用效果,整个网络的平均通信吞吐量约为35 Mbit/s,最低通信吞吐量约为7 Mbit/s,能够满足大多数综采工作面的通信需求。Abstract: At present, there are problems about few application research of WiFi communication in the specific environment of fully mechanized coal mining face, propagation characteristics of WiFi signal on the fully mechanized coal mining face were analyzed combined with wireless signal spatial propagation theory. The analysis results show that on the fully mechanized coal mining face, the WiFi signal propagation is greatly affected, especially the signal coverage is obviously reduced; the WiFi signal propagation on the fully mechanized coal mining face conforms to log-distance path loss model. According to the spatial layout characteristics of fully mechanized coal mining face, an optimal technical scheme of no-dead zone and full coverage WiFi communication network of fully mechanized coal mining face was constructed by fast roaming technology and Mesh network technology. The test results show that the scheme can solve the problem of video communication on the shearer, and realize fast roaming function of WiFi network, can effectively ensure the application effect of the mobile terminal, and the average communication throughput of the whole network is about 35 Mbit/s, the minimum communication throughput is about 7 Mbit/s, which can meet most of the communication needs on fully mechanized coal mining face.
点击查看大图
计量
- 文章访问数: 88
- HTML全文浏览量: 8
- PDF下载量: 9
- 被引次数: 0