留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤机设备轴承故障诊断方法

杨春才 李向磊 吕晓伟

杨春才,李向磊,吕晓伟. 煤机设备轴承故障诊断方法[J]. 工矿自动化,2023,49(12):147-151.  doi: 10.13272/j.issn.1671-251x.18176
引用本文: 杨春才,李向磊,吕晓伟. 煤机设备轴承故障诊断方法[J]. 工矿自动化,2023,49(12):147-151.  doi: 10.13272/j.issn.1671-251x.18176
YANG Chuncai, LI Xianglei, LYU Xiaowei. Diagnosis method for bearing faults in coal mining equipment[J]. Journal of Mine Automation,2023,49(12):147-151.  doi: 10.13272/j.issn.1671-251x.18176
Citation: YANG Chuncai, LI Xianglei, LYU Xiaowei. Diagnosis method for bearing faults in coal mining equipment[J]. Journal of Mine Automation,2023,49(12):147-151.  doi: 10.13272/j.issn.1671-251x.18176

煤机设备轴承故障诊断方法

doi: 10.13272/j.issn.1671-251x.18176
基金项目: 国家能源集团2020年第二批科技项目(GJNY-20-238)。
详细信息
    作者简介:

    杨春才(1976—),男,内蒙古包头人,助理工程师,主要从事煤矿智能化技术应用工作,E-mail:11515410@chnenergy.com.cn

  • 中图分类号: TD67

Diagnosis method for bearing faults in coal mining equipment

  • 摘要:

    煤机设备滚动轴承早期故障特征微弱,且易受载荷、工况等因素的影响而被噪声淹没,导致轴承故障诊断困难。现有研究大多采用单一算法处理轴承故障信号,故障特征提取精度和故障诊断准确性有待进一步提高。提出了一种融合局部特征尺度分解(LCD)和奇异值分解(SVD)的煤机设备轴承故障诊断方法:采用LCD方法将煤机设备轴承振动信号分解为若干个内凛尺度分量(ISC),实现信号初步降噪;计算各ISC的香农熵,选择香农熵最小的ISC进行SVD,并构建SVD信号的奇异值差分谱,针对最大突变分量进行信号重构,实现信号增强去噪;对重构信号进行Hilbert包络解调,得到轴承故障特征频率,进而判断轴承故障。采用现场实测数据对基于LCD−SVD的煤机设备轴承故障诊断方法进行验证,结果表明,该方法可准确提取出轴承故障特征频率,从而实现煤机设备轴承早期故障诊断。

     

  • 图  1  煤机设备轴承振动信号LCD原理

    Figure  1.  Local characteristic-scale decomposition(LCD) principle of vibration signal of coal machine bearing

    图  2  基于LCD–SVD的煤机设备轴承故障诊断流程

    Figure  2.  Fault diagnosis flow ofcoal machine bearing based on LCD and singular value decompostion(SVD)

    图  3  提升机在线监测系统组成

    Figure  3.  Composition of on-line hoist monitoring system

    图  4  减速机轴承振动信号时域波形及其幅值谱

    Figure  4.  Temporal waveform and amplitude spectrum of vibration signal of reducer bearing

    图  5  轴承振动信号LCD结果

    Figure  5.  LCD results of vibration signal of bearing

    图  6  ISC1的SVD信号奇异值及其差分谱(前100个点)

    Figure  6.  Singular value and its difference spectrum of SVD signal of ISC1 (former 100 points)

    图  7  重构的ISC1时域波形

    Figure  7.  Temporal waveform of reconstructed ISC1

    图  8  重构的ISC1包络谱

    Figure  8.  Envelope spectrum of reconstructed ISC1

    图  9  ISC1包络谱

    Figure  9.  Envelope spectrum of ISC1

    图  10  故障轴承

    Figure  10.  Faulty bearing

    表  1  ISC1—ISC6香农熵

    Table  1.   The Shannon entropy of ISC1-ISC6

    ISC ISC1 ISC2 ISC3 ISC5 ISC6
    香农熵 4.386 4 5.708 3 5.480 8 5.652 9 5.504 0
    下载: 导出CSV
  • [1] 马海龙,李臻,朱益军,等. 基于差分振子的带式输送机故障诊断方法[J]. 工矿自动化,2013,39(10):24-27.

    MA Hailong,LI Zhen,ZHU Yijun,et al. Fault diagnosis method of belt conveyor based on differential resonator[J]. Industry and Mine Automation,2013,39(10):24-27.
    [2] 马海龙. 基于多信息融合的刮板输送机减速机模糊故障诊断专家系统[J]. 煤矿机械,2019,40(9):174-176.

    MA Hailong. Fault diagnosis fuzzy expert system of scraper conveyer reducer based on multi-information fusion[J]. Coal Mine Machinery,2019,40(9):174-176.
    [3] 焦玉冰,李杰,马喜宏,等. 一种采煤机截割部滚动轴承故障诊断方法[J]. 计算机测量与控制,2023,31(5):73-79.

    JIAO Yubing,LI Jie,MA Xihong,et al. A fault diagnosis method for rolling bearing of shearer cutting section[J]. Computer Measurement & Control,2023,31(5):73-79.
    [4] 郭军. 基于差分振子的煤机设备故障诊断方法研究[J]. 煤矿机械,2023,44(4):188-192.

    GUO Jun. Research on fault diagnosis method of coal machinery equipment based on differential resonator[J]. Coal Mine Machinery,2023,44(4):188-192.
    [5] 班冬冬. 基于数据驱动的矿井通风机轴承故障诊断研究[D]. 西安:西安科技大学,2020.

    BAN Dongdong. Research on fault diagnosis of mine ventilator bearing based on date drive[D]. Xi'an:Xi'an University of Science and Technology,2020.
    [6] 宫涛,杨建华,单振,等. 强噪声背景与变转速工况条件下滚动轴承故障诊断研究[J]. 工矿自动化,2021,47(7):63-71.

    GONG Tao,YANG Jianhua,SHAN Zhen,et al. Research on rolling bearing fault diagnosis under strong noise background and variable speed working condition[J]. Industry and Mine Automation,2021,47(7):63-71.
    [7] 郭秀才,吴妮,曹鑫. 基于特征融合与DBN的矿用通风机滚动轴承故障诊断[J]. 工矿自动化,2021,47(10):14-20,26.

    GUO Xiucai,WU Ni,CAO Xin. Fault diagnosis of rolling bearing of mine ventilator based on characteristic fusion and DBN[J]. Industry and Mine Automation,2021,47(10):14-20,26.
    [8] 崔玲丽,刘银行,王鑫. 基于改进奇异值分解的滚动轴承微弱故障特征提取方法[J]. 机械工程学报,2022,58(17):156-169. doi: 10.3901/JME.2022.17.156

    CUI Lingli,LIU Yinhang,WANG Xin. Feature extraction of weak fault for rolling bearing based on improved singular value decomposition[J]. Journal of Mechanical Engineering,2022,58(17):156-169. doi: 10.3901/JME.2022.17.156
    [9] 胥永刚,杨苗蕊,马朝永. 基于改进延伸奇异值分解包的滚动轴承故障诊断[J]. 北京工业大学学报,2023,49(7):729-736.

    XU Yonggang,YANG Miaorui,MA Chaoyong. Improved extended singular value decomposition packet and its application in fault diagnosis of rolling bearings[J]. Journal of Beijing University of Technology,2023,49(7):729-736.
    [10] 苏紫娜,马军,王晓东,等. 改进SVD算法的转子系统轴心轨迹快速提纯研究[J]. 振动与冲击,2023,42(10):144-154.

    SU Zina,MA Jun,WANG Xiaodong,et al. Rapid purification of rotor system axis trajectory based on improved SVD algorithm[J]. Journal of Vibration and Shock,2023,42(10):144-154.
    [11] 李华,刘韬,伍星,等. 相关奇异值比的SVD在轴承故障诊断中的应用[J]. 机械工程学报,2021,57(21):138-149. doi: 10.3901/JME.2021.21.138

    LI Hua,LIU Tao,WU Xing,et al. Application of SVD based on correlated singular value ratio in bearing fault diagnosis[J]. Journal of Mechanical Engineering,2021,57(21):138-149. doi: 10.3901/JME.2021.21.138
    [12] 陈雪俊,贝绍轶,李波,等. 基于组合降噪的卷积神经网络轴承故障诊断方法[J]. 重庆理工大学学报(自然科学),2021,35(2):96-104.

    CHEN Xuejun,BEI Shaoyi,LI Bo,et al. Fault diagnosis of bearing based on convolutional neural network with combined noise reduction[J]. Journal of Chongqing University of Technology(Natural Science),2021,35(2):96-104.
    [13] 刘湘楠,赵学智,上官文斌. 强背景噪声振动信号中滚动轴承故障冲击特征提取[J]. 振动工程学报,2021,34(1):202-210.

    LIU Xiangnan,ZHAO Xuezhi,SHANGGUAN Wenbin. The impact features extraction of rolling bearing under strong background noise[J]. Journal of Vibration Engineering,2021,34(1):202-210.
    [14] 陈剑,阚东,孙太华,等. 基于SVD−VMD和SVM滚动轴承故障诊断方法[J]. 电子测量与仪器学报,2022,36(1):220-226.

    CHEN Jian,KAN Dong,SUN Taihua,et al. Rolling bearing fault diagnosis method based on SVD-VMD and SVM[J]. Journal of Electronic Measurement and Instrumentation,2022,36(1):220-226.
    [15] 常妍,蔡改改,胡耀阳. 加权firm阈值奇异值分解及其旋转机械故障诊断[J]. 噪声与振动控制,2023,43(5):135-141,187.

    CHANG Yan,CAI Gaigai,HU Yaoyang. Weighted firm threshold singular value decomposition and rotating machinery fault diagnosis[J]. Noise and Vibration Control,2023,43(5):135-141,187.
    [16] 张林锋,田慕琴,宋建成,等. 基于奇异值分解的掘进机振动信号特征量提取[J]. 工矿自动化,2019,45(1):28-34.

    ZHANG Linfeng,TIAN Muqin,SONG Jiancheng,et al. Feature extraction of vibration signal of roadheader based on singular value decomposition[J]. Industry and Mine Automation,2019,45(1):28-34.
    [17] 田再克,李洪儒,谷宏强,等. 基于局部特征尺度分解和JRD距离的液压泵性能退化状态识别方法[J]. 振动与冲击,2016,35(20):54-59.

    TIAN Zaike,LI Hongru,GU Hongqiang,et al. Degradation status identification of a hydraulic pump based on local characteristic-scale decomposition and JRD[J]. Journal of Vibration and Shock,2016,35(20):54-59.
    [18] 杨宇,曾鸣,程军圣. 局部特征尺度分解方法及其分量判据研究[J]. 中国机械工程,2013,24(2):195-201,208.

    YANG Yu,ZENG Ming,CHENG Junsheng. Research on local characteristic-scale decomposition and its stopping criteria[J]. China Mechanical Engineering,2013,24(2):195-201,208.
    [19] 丁雷,曾锐利,沈虹,等. 基于香农熵特征的发动机故障诊断方法[J]. 振动与冲击,2018,37(21):233-239.

    DING Lei,ZENG Ruili,SHEN Hong,et al. An engine fault diagnosis method based on Shannon entropy features[J]. Journal of Vibration and Shock,2018,37(21):233-239.
    [20] 鲍杰,景博,焦晓璇,等. 基于CEEMD香农熵和GAPSO−SVM的机载燃油泵故障诊断方法[J]. 机械强度,2022,44(4):781-787.

    BAO Jie,JING Bo,JIAO Xiaoxuan,et al. Fault diagonsis method of airborne fuel pump based on CEEMD Shannon entropy and GAPSO-SVM[J]. Journal of Mechanical Strength,2022,44(4):781-787.
    [21] 李贵红,赵丽丽,杜昕,等. 基于EMD和香农熵的刀具磨损故障诊断系统开发[J]. 工业仪表与自动化装置,2019(2):114-117.

    LI Guihong,ZHAO Lili,DU Xin,et al. Development of tools wearing fault diagnosis system based on EMD and Shannon[J]. Industrial Instrumentation & Automation,2019(2):114-117.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  70
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-11
  • 修回日期:  2023-12-15
  • 网络出版日期:  2024-01-04

目录

    /

    返回文章
    返回