Diagnosis method for bearing faults in coal mining equipment
-
摘要:
煤机设备滚动轴承早期故障特征微弱,且易受载荷、工况等因素的影响而被噪声淹没,导致轴承故障诊断困难。现有研究大多采用单一算法处理轴承故障信号,故障特征提取精度和故障诊断准确性有待进一步提高。提出了一种融合局部特征尺度分解(LCD)和奇异值分解(SVD)的煤机设备轴承故障诊断方法:采用LCD方法将煤机设备轴承振动信号分解为若干个内凛尺度分量(ISC),实现信号初步降噪;计算各ISC的香农熵,选择香农熵最小的ISC进行SVD,并构建SVD信号的奇异值差分谱,针对最大突变分量进行信号重构,实现信号增强去噪;对重构信号进行Hilbert包络解调,得到轴承故障特征频率,进而判断轴承故障。采用现场实测数据对基于LCD−SVD的煤机设备轴承故障诊断方法进行验证,结果表明,该方法可准确提取出轴承故障特征频率,从而实现煤机设备轴承早期故障诊断。
Abstract:The early fault characteristics of rolling bearings in coal mining equipment are weak, and they are easily affected by factors such as load and working conditions. The characteristics can be submerged by noise, making bearing fault diagnosis difficult. Most existing research uses a single algorithm to process bearing fault signals, and the accuracy of fault characteristic extraction and fault diagnosis needs to be further improved. A fault diagnosis method for coal mining equipment bearings is proposed, which combines local characteristic-scale decomposition (LCD) and singular value decomposition (SVD). The LCD method is used to decompose the vibration signal of coal mining equipment bearings into several intrinsic scale components (ISC), achieving preliminary signal denoising. The method calculates the Shannon entropy of each ISC, selects the ISC with the smallest Shannon entropy for SVD. The method constructs the singular value difference spectrum of the SVD signal. The method reconstructs the signal for the maximum abrupt component to achieve signal enhancement and denoising. The method performs Hilbert envelope demodulation on the reconstructed signal to obtain the characteristic frequency of bearing faults, and then determine the bearing faults. The on-site measured data is used to validate the bearing fault diagnosis method of coal mining equipment based on LCD-SVD. The results show that this method can accurately extract the characteristic frequency of bearing faults, thereby achieving early fault diagnosis of coal mining equipment bearings.
-
表 1 ISC1—ISC6香农熵
Table 1. The Shannon entropy of ISC1-ISC6
ISC ISC1 ISC2 ISC3 ISC5 ISC6 香农熵 4.386 4 5.708 3 5.480 8 5.652 9 5.504 0 -
[1] 马海龙,李臻,朱益军,等. 基于差分振子的带式输送机故障诊断方法[J]. 工矿自动化,2013,39(10):24-27.MA Hailong,LI Zhen,ZHU Yijun,et al. Fault diagnosis method of belt conveyor based on differential resonator[J]. Industry and Mine Automation,2013,39(10):24-27. [2] 马海龙. 基于多信息融合的刮板输送机减速机模糊故障诊断专家系统[J]. 煤矿机械,2019,40(9):174-176.MA Hailong. Fault diagnosis fuzzy expert system of scraper conveyer reducer based on multi-information fusion[J]. Coal Mine Machinery,2019,40(9):174-176. [3] 焦玉冰,李杰,马喜宏,等. 一种采煤机截割部滚动轴承故障诊断方法[J]. 计算机测量与控制,2023,31(5):73-79.JIAO Yubing,LI Jie,MA Xihong,et al. A fault diagnosis method for rolling bearing of shearer cutting section[J]. Computer Measurement & Control,2023,31(5):73-79. [4] 郭军. 基于差分振子的煤机设备故障诊断方法研究[J]. 煤矿机械,2023,44(4):188-192.GUO Jun. Research on fault diagnosis method of coal machinery equipment based on differential resonator[J]. Coal Mine Machinery,2023,44(4):188-192. [5] 班冬冬. 基于数据驱动的矿井通风机轴承故障诊断研究[D]. 西安:西安科技大学,2020.BAN Dongdong. Research on fault diagnosis of mine ventilator bearing based on date drive[D]. Xi'an:Xi'an University of Science and Technology,2020. [6] 宫涛,杨建华,单振,等. 强噪声背景与变转速工况条件下滚动轴承故障诊断研究[J]. 工矿自动化,2021,47(7):63-71.GONG Tao,YANG Jianhua,SHAN Zhen,et al. Research on rolling bearing fault diagnosis under strong noise background and variable speed working condition[J]. Industry and Mine Automation,2021,47(7):63-71. [7] 郭秀才,吴妮,曹鑫. 基于特征融合与DBN的矿用通风机滚动轴承故障诊断[J]. 工矿自动化,2021,47(10):14-20,26.GUO Xiucai,WU Ni,CAO Xin. Fault diagnosis of rolling bearing of mine ventilator based on characteristic fusion and DBN[J]. Industry and Mine Automation,2021,47(10):14-20,26. [8] 崔玲丽,刘银行,王鑫. 基于改进奇异值分解的滚动轴承微弱故障特征提取方法[J]. 机械工程学报,2022,58(17):156-169. doi: 10.3901/JME.2022.17.156CUI Lingli,LIU Yinhang,WANG Xin. Feature extraction of weak fault for rolling bearing based on improved singular value decomposition[J]. Journal of Mechanical Engineering,2022,58(17):156-169. doi: 10.3901/JME.2022.17.156 [9] 胥永刚,杨苗蕊,马朝永. 基于改进延伸奇异值分解包的滚动轴承故障诊断[J]. 北京工业大学学报,2023,49(7):729-736.XU Yonggang,YANG Miaorui,MA Chaoyong. Improved extended singular value decomposition packet and its application in fault diagnosis of rolling bearings[J]. Journal of Beijing University of Technology,2023,49(7):729-736. [10] 苏紫娜,马军,王晓东,等. 改进SVD算法的转子系统轴心轨迹快速提纯研究[J]. 振动与冲击,2023,42(10):144-154.SU Zina,MA Jun,WANG Xiaodong,et al. Rapid purification of rotor system axis trajectory based on improved SVD algorithm[J]. Journal of Vibration and Shock,2023,42(10):144-154. [11] 李华,刘韬,伍星,等. 相关奇异值比的SVD在轴承故障诊断中的应用[J]. 机械工程学报,2021,57(21):138-149. doi: 10.3901/JME.2021.21.138LI Hua,LIU Tao,WU Xing,et al. Application of SVD based on correlated singular value ratio in bearing fault diagnosis[J]. Journal of Mechanical Engineering,2021,57(21):138-149. doi: 10.3901/JME.2021.21.138 [12] 陈雪俊,贝绍轶,李波,等. 基于组合降噪的卷积神经网络轴承故障诊断方法[J]. 重庆理工大学学报(自然科学),2021,35(2):96-104.CHEN Xuejun,BEI Shaoyi,LI Bo,et al. Fault diagnosis of bearing based on convolutional neural network with combined noise reduction[J]. Journal of Chongqing University of Technology(Natural Science),2021,35(2):96-104. [13] 刘湘楠,赵学智,上官文斌. 强背景噪声振动信号中滚动轴承故障冲击特征提取[J]. 振动工程学报,2021,34(1):202-210.LIU Xiangnan,ZHAO Xuezhi,SHANGGUAN Wenbin. The impact features extraction of rolling bearing under strong background noise[J]. Journal of Vibration Engineering,2021,34(1):202-210. [14] 陈剑,阚东,孙太华,等. 基于SVD−VMD和SVM滚动轴承故障诊断方法[J]. 电子测量与仪器学报,2022,36(1):220-226.CHEN Jian,KAN Dong,SUN Taihua,et al. Rolling bearing fault diagnosis method based on SVD-VMD and SVM[J]. Journal of Electronic Measurement and Instrumentation,2022,36(1):220-226. [15] 常妍,蔡改改,胡耀阳. 加权firm阈值奇异值分解及其旋转机械故障诊断[J]. 噪声与振动控制,2023,43(5):135-141,187.CHANG Yan,CAI Gaigai,HU Yaoyang. Weighted firm threshold singular value decomposition and rotating machinery fault diagnosis[J]. Noise and Vibration Control,2023,43(5):135-141,187. [16] 张林锋,田慕琴,宋建成,等. 基于奇异值分解的掘进机振动信号特征量提取[J]. 工矿自动化,2019,45(1):28-34.ZHANG Linfeng,TIAN Muqin,SONG Jiancheng,et al. Feature extraction of vibration signal of roadheader based on singular value decomposition[J]. Industry and Mine Automation,2019,45(1):28-34. [17] 田再克,李洪儒,谷宏强,等. 基于局部特征尺度分解和JRD距离的液压泵性能退化状态识别方法[J]. 振动与冲击,2016,35(20):54-59.TIAN Zaike,LI Hongru,GU Hongqiang,et al. Degradation status identification of a hydraulic pump based on local characteristic-scale decomposition and JRD[J]. Journal of Vibration and Shock,2016,35(20):54-59. [18] 杨宇,曾鸣,程军圣. 局部特征尺度分解方法及其分量判据研究[J]. 中国机械工程,2013,24(2):195-201,208.YANG Yu,ZENG Ming,CHENG Junsheng. Research on local characteristic-scale decomposition and its stopping criteria[J]. China Mechanical Engineering,2013,24(2):195-201,208. [19] 丁雷,曾锐利,沈虹,等. 基于香农熵特征的发动机故障诊断方法[J]. 振动与冲击,2018,37(21):233-239.DING Lei,ZENG Ruili,SHEN Hong,et al. An engine fault diagnosis method based on Shannon entropy features[J]. Journal of Vibration and Shock,2018,37(21):233-239. [20] 鲍杰,景博,焦晓璇,等. 基于CEEMD香农熵和GAPSO−SVM的机载燃油泵故障诊断方法[J]. 机械强度,2022,44(4):781-787.BAO Jie,JING Bo,JIAO Xiaoxuan,et al. Fault diagonsis method of airborne fuel pump based on CEEMD Shannon entropy and GAPSO-SVM[J]. Journal of Mechanical Strength,2022,44(4):781-787. [21] 李贵红,赵丽丽,杜昕,等. 基于EMD和香农熵的刀具磨损故障诊断系统开发[J]. 工业仪表与自动化装置,2019(2):114-117.LI Guihong,ZHAO Lili,DU Xin,et al. Development of tools wearing fault diagnosis system based on EMD and Shannon[J]. Industrial Instrumentation & Automation,2019(2):114-117.