Cutting control of boom-type roadheader considering coal rock hardness
-
摘要: 煤岩硬度显著影响悬臂式掘进机空间运行状态,分析掘进机空间运行状态与煤岩硬度变化的关联性,有助于更好地实现悬臂式掘进机自动化截割控制。为提高截割控制精度,提出了一种考虑煤岩硬度的悬臂式掘进机截割控制方法。根据动力学原理获得了悬臂式掘进机空间运行状态与煤岩硬度变化的关系,得出随着截割头与目标点之间的距离、运动范围半径及动态角度增大,截割头的运行稳定性会相应提高。采用加权平衡的方式确定自动化控制参数,采用PID控制和闭环模糊控制方法实现掘进机自动化截割控制。实验结果表明,该方法横向控制和纵向控制都表现出较好的性能,掘进机截割头摆速在2 s内达到稳定值,动态工作稳定性好;悬臂式掘进机截割头回转和升降角度变化轨迹与期望轨迹之间的吻合度较高,整体偏离程度较小,控制精度较高。Abstract: The coal rock hardness significantly affects the spatial operation status of boom-type roadheader. Analyzing the correlation between the spatial operation status of roadheader and changes in coal rock hardness can help better achieve automatic cutting control of boom-type roadheader. To improve the cutting control precision, a boom-type roadheader cutting control method considering coal rock hardness is proposed. Based on the principles of dynamics, the relationship between the spatial operation status of the boom-type roadheader and the changes of coal rock hardness is obtained. It is found that as the distance between the cutting head and the target point, the radius of the motion range, and the dynamic angle increase, the operational stability of the cutting head will correspondingly improve. The automation control parameters are determined using a weighted balance method, and PID control and closed-loop fuzzy control methods are used to achieve automatic cutting control of the roadheader. The experimental results show that the method exhibits good performance in both horizontal and vertical control. The cutting head swing speed of the roadheader reaches a stable value within 2 seconds, and the dynamic working stability is good. The alignment between the trajectory of the rotation and lifting angle change of the boom-type roadheader's cutting head and the expected trajectory is high, and the overall angle deviation is small, resulting in high control precision.
-
表 1 煤岩体及掘进机相关实验参数
Table 1. Related experimental parameters of coal rock mass and roadheader
参数 值 煤岩体长度/m 315 最大行走速度/(m·s−1) 10 最大岩石单轴抗压强度/MPa 80 装机功率/kW 10 500 截割头转速/(r·min−1) 46~23 截割伸长量/mm 680 液压泵功率/kW 120 掘进最宽量/mm 6 800 掘进功率/kW 200 掘进最高量/mm 5 500 回转油缸两腔容积/L 21.22 升降油缸两腔容积/L 19.1~30.5 悬臂垂直摆角范围/(°) −30.524~−50.698 悬臂总质量/kg 226 总机质量/kg 39 600 回转台质量/kg 1 474 悬臂长度/mm 3 470 截割头伸缩量/mm 550 表 2 煤岩硬度参数
Table 2. Coal rock hardness parameters
煤岩 硬度
等级坚固性系数 典型
矿种摩擦
因数单位截割阻
力/(N·cm−1)H1 低硬度 2~3 大理岩 0.35 500 H2 中硬度 4~5 花岗岩 0.40 800 H3 高硬度 6~7 石英岩 0.45 1 200 -
[1] HUO Junzhou,ZHANG Haidong,XU Zhaohui,et al. Coupling dynamic characteristics of tunnel boring machine cutterhead system with multi-source uncertainties[J]. Engineering Failure Analysis,2022,137. DOI: 10.1016/j.engfailanal.2022.106180. [2] SHAO Xiaokang,YANG Zhiyong,JIANG Yusheng,et al. Coupled FDM–DEM method for analyzing EPBS machine tunneling performance in boulders[J]. International Journal of Geomechanics,2022,22(12):348-362. [3] 张旭辉,赵建勋,张超,等. 悬臂式掘进机视觉伺服截割控制系统研究[J]. 煤炭科学技术,2022,50(2):263-270.ZHANG Xuhui,ZHAO Jianxun,ZHANG Chao,et al. Study on visual servo control system for cutting of cantilever roadheader[J]. Coal Science and Technology,2022,50(2):263-270. [4] 王鹏江,杨阳,王东杰,等. 悬臂式掘进机煤矸智能截割控制系统与方法[J]. 煤炭学报,2021,46(增刊2):1124-1134.WANG Pengjiang,YANG Yang,WANG Dongjie,et al. Intelligent cutting control system and method of coal and gangue in robotic roadheader[J]. Journal of China Coal Society,2021,46(S2):1124-1134. [5] 王少锋,李夕兵,宫凤强,等. 深部硬岩截割特性与机械化破岩试验研究[J]. 中南大学学报(自然科学版),2021,52(8):2772-2782.WANG Shaofeng,LI Xibing,GONG Fengqiang,et al. Breakage characteristics and mechanized mining experiment in deep hard rock[J]. Journal of Central South University(Science and Technology),2021,52(8):2772-2782. [6] 王少锋. 深部硬岩截割特性及非爆机械化开采研究[J]. 岩石力学与工程学报,2021,40(5):1080.WANG Shaofeng. Study on rock cuttability and non-explosive mechanized mining in deep hard rock[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(5):1080. [7] 于力率,苏晓杰,孙少欣,等. 基于分层控制策略的六轮滑移机器人横向稳定性控制[J]. 自动化学报,2023,49(7):1421-1432.YU Lishuai,SU Xiaojie,SUN Shaoxin,et al. Lateral stability control of six-wheeled skid-steering robot based on hierarchical control strategy[J]. Acta Automatica Sinica,2023,49(7):1421-1432. [8] 彭天好,储安圆,何兴川,等. 悬臂式掘进机截割轨迹控制联合仿真研究[J]. 机床与液压,2023,51(8):130-136.PENG Tianhao,CHU Anyuan,HE Xingchuan,et al. Co-simulation research on cutting trajectory control of boom-type roadheader[J]. Machine Tool & Hydraulics,2023,51(8):130-136. [9] 张旭辉,张超,王妙云,等. 数字孪生驱动的悬臂式掘进机虚拟操控技术[J]. 计算机集成制造系统,2021,27(6):1617-1628.ZHANG Xuhui,ZHANG Chao,WANG Miaoyun,et al. Digital twin-driven virtual control technology of cantilever roadheader[J]. Computer Integrated Manufacturing Systems,2021,27(6):1617-1628. [10] 周开平. 煤矿井下悬臂式掘进机回转机构优化设计[J]. 煤炭技术,2021,40(9):177-180.ZHOU Kaiping. Optimization design of slewing mechanism of cantilever roadheader in coal mine[J]. Coal Technology,2021,40(9):177-180. [11] 王苏彧,马登成,任泽,等. 悬臂式掘进机断面成型轨迹多目标优化方法研究[J]. 仪器仪表学报,2021,41(8):183-192.WANG Suyu,MA Dengcheng,REN Ze,et al. A multi-objective optimization method for cantilever roadheader section forming trajectory[J]. Chinese Journal of Scientific Instrument,2021,41(8):183-192. [12] 梁军,赵磊,盘朝奉,等. 基于灰狼优化算法的茶园拖拉机转角控制器[J]. 江苏大学学报(自然科学版),2022,43(5):539-546.LIANG Jun,ZHAO Lei,PAN Chaofeng,et al. Steering controller of tea garden tractor based on grey wolf optimization algorithm[J]. Journal of Jiangsu University(Natural Science Edition),2022,43(5):539-546. [13] INFANTE G. On the solvability of a parameter-dependent cantilever-type BVP[J]. Applied Mathematics Letters,2022,132. DOI: 10.1016/j.aml.2022.108090. [14] 赵丽娟,王雅东,张美晨,等. 复杂煤层条件下采煤机自适应截割控制策略[J]. 煤炭学报,2022,47(1):541-563.ZHAO Lijuan,WANG Yadong,ZHANG Meichen,et al. Research on self-adaptive cutting control strategy of shearer in complex coal seam[J]. Journal of China Coal Society,2022,47(1):541-563. [15] 张超, 张旭辉, 张楷鑫, 等. 数字孪生驱动掘进机远程自动截割控制技术[J]. 工矿自动化,2020,46(9):15-20,32.ZHANG Chao, ZHANG Xuhui, ZHANG Kaixin, et al. Digital twin driven remote automatic cutting control technology of roadheader[J]. Industry and Mine Automation,2020,46(9):15-20,32. [16] 张旭辉, 石硕, 杨红强, 等. 悬臂式掘进机自主调速截割控制系统[J]. 工矿自动化,2023,49(1):80-89.ZHANG Xuhui, SHI Shuo, YANG Hongqiang, et al. Boom-type roadheader autonomous speed regulation cutting control system[J]. Journal of Mine Automation,2023,49(1):80-89. [17] 宗凯, 符世琛, 吴淼, 等. 基于GA–BP网络的掘进机截割臂摆速控制策略与仿真[J]. 煤炭学报,2021,46(S1):511-519.ZONG Kai, FU Shichen, WU Miao, et al. Simulation of control strategy for swing speed of roadheader's cutting arm based on GA-BP network[J]. Journal of China Coal Society,2021,46(S1):511-519. [18] 蔡文安, 杨兆建, 王义亮. 截割头运动参数对掘进机截割性能影响的试验研究[J]. 矿业研究与开发,2017,37(8):113-117.CAI Wen'an, YANG Zhaojian, WANG Yiliang. Experimental study on the impacts of motion parameters of cutting head on cutting performance of roadheader[J]. Mining Research and Development,2017,37(8):113-117. [19] 韩超,张柯. 双护盾隧道掘进机穿越地铁区间断层破碎带卡机机理及防卡机技术[J]. 城市轨道交通研究,2022,25(6):153-158.HAN Chao,ZHANG Ke. Jamming mechanism of double shield TBM excavating in metro tunnel interval fault fracture zone and antijamming technology[J]. Urban Mass Transit,2022,25(6):153-158. [20] SHI Gang,QIN Chengjin,TAO Jianfeng,et al. A VMD-EWT-LSTM-based multi-step prediction approach for shield tunneling machine cutterhead torque[J]. Knowledge-based Systems,2021,228. DOI: 10.1016/j.knosys.2021.107213. [21] 杭阿芳,王秀梅. 基于模糊PID的多电机并联运行主从控制仿真[J]. 计算机仿真,2023,40(6):316-320.HANG Afang,WANG Xiumei. The simulation of master-slave control of multi-motor parallel operation based on fuzzy PID[J]. Computer Simulation,2023,40(6):316-320. [22] 郭一谚,姜玉海,郭瑞,等. 电控比例变量泵的模糊控制算法研究[J]. 兵器材料科学与工程,2021,44(6):103-106.GUO Yiyan,JIANG Yuhai,GUO Rui,et al. Fuzzy control algorithm based on electronically controlled proportional variable pump[J]. Ordnance Material Science and Engineering,2021,44(6):103-106. [23] 李臣旭,江浩斌,王成雨,等. 基于传感器信息融合的车辆位姿估算方法[J]. 江苏大学学报(自然科学版),2022,43(6):636-644.LI Chenxu,JIANG Haobin,WANG Chengyu,et al. Estimation method of vehicle position and attitude based on sensor information fusion[J]. Journal of Jiangsu University(Natural Science Edition),2022,43(6):636-644. [24] 张敏骏,吉晓冬,李旭,等. 掘进机姿态调整模型辨识方法与精准控制[J]. 西安交通大学学报,2021,55(6):9-17.ZHANG Minjun,JI Xiaodong,LI Xu,et al. Method of model identification and precise control for tunnel boring machine body posture adjustment[J]. Journal of Xi'an Jiaotong University,2021,55(6):9-17. [25] 任超,孙晓明,李元海,等. 深部复合地层TBM隧道支护结构作用的透明岩体试验研究[J]. 湖南大学学报(自然科学版),2021,48(1):59-69.REN Chao,SUN Xiaoming,LI Yuanhai,et al. Experimental study on TBM tunnel support structure in deep composite stratum using transparent rock[J]. Journal of Hunan University(Natural Sciences),2021,48(1):59-69.