留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高采样频率的矿井电火花图像识别及抗干扰方法研究

李小伟 王建业

李小伟,王建业. 高采样频率的矿井电火花图像识别及抗干扰方法研究[J]. 工矿自动化,2023,49(8):88-93, 147.  doi: 10.13272/j.issn.1671-251x.18145
引用本文: 李小伟,王建业. 高采样频率的矿井电火花图像识别及抗干扰方法研究[J]. 工矿自动化,2023,49(8):88-93, 147.  doi: 10.13272/j.issn.1671-251x.18145
LI Xiaowei, WANG Jianye. Research on high sampling frequency mine electric spark image recognition and anti-interference methods[J]. Journal of Mine Automation,2023,49(8):88-93, 147.  doi: 10.13272/j.issn.1671-251x.18145
Citation: LI Xiaowei, WANG Jianye. Research on high sampling frequency mine electric spark image recognition and anti-interference methods[J]. Journal of Mine Automation,2023,49(8):88-93, 147.  doi: 10.13272/j.issn.1671-251x.18145

高采样频率的矿井电火花图像识别及抗干扰方法研究

doi: 10.13272/j.issn.1671-251x.18145
基金项目: 国家重点研发计划资助项目(2016YFC0801800)。
详细信息
    作者简介:

    李小伟(1991—),男,河南商丘人,博士研究生,研究方向为矿井监视与监测,E-mail:844051159@qq.com

  • 中图分类号: TD67

Research on high sampling frequency mine electric spark image recognition and anti-interference methods

  • 摘要: 隔爆外壳外的电缆和电气设备漏电、大功率无线电发射在金属支护和机电设备金属上感生电动势放电产生的矿井电火花,会引起瓦斯和煤尘爆炸及矿井火灾事故,因此有必要尽早感知矿井电火花。影响矿井电火花识别的主要是矿井光源,为减少矿井光源对矿井电火花图像识别的干扰,提出了一种高采样频率的矿井电火花图像识别及抗干扰方法:依据电火花的最长持续发光时间和闪光光源的最短持续发光时间,计算摄像机的采样频率,保证每次电火花出现时,电火花图像只出现在1帧图像上,且矿井光源存在时,干扰光源图像至少出现在连续2帧图像上;计算每帧图像的像素灰度和,若当前帧图像的像素灰度和与前后相邻帧图像的像素灰度和的差值均大于设定的阈值,则发出矿井电火花报警信号。试验结果表明:在无干扰光源条件下,该方法可准确识别矿井电火花图像,准确率达100%;在有日光灯、白炽灯等常亮光源干扰条件下,电火花与日光灯混合图像中电火花识别准确率达99.40%,电火花与白炽灯混合图像中电火花识别准确率达99.67%;在有闪光光源干扰条件下,电火花与闪光灯混合图像中电火花识别准确率达100%。

     

  • 图  1  高采样频率的矿井电火花图像识别及抗干扰方法流程

    Figure  1.  Flow of mine electric spark image recognition and anti-interference method with high sampling frequency

    图  2  电火花发生装置及其产生的电火花

    Figure  2.  Electric spark generator device and electric spark generated

    图  3  紫外摄像机及紫外滤光片

    Figure  3.  Ultraviolet camera and ultraviolet filter

    图  4  无光源干扰条件下电火花图像像素灰度和分布

    Figure  4.  Distribution of the sum of pixel grayscale of electric spark image without light source interference

    图  5  无光源干扰条件下电火花图像识别帧数

    Figure  5.  Number of frames for electric spark image recognition without light source interference

    图  6  日光灯干扰条件下电火花图像像素灰度和分布

    Figure  6.  Distribution of the sum of pixel grayscale of electric spark image under fluorescent lamp interference

    图  7  日光灯干扰条件下电火花图像识别帧数

    Figure  7.  Number of frames for electric spark image recognition under fluorescent lamp interference

    图  8  白炽灯干扰条件下电火花图像像素灰度和分布

    Figure  8.  Distribution of the sum of pixel grayscale of electric spark image under incandescent lamp interference

    图  9  白炽灯干扰条件下电火花图像识别帧数

    Figure  9.  Number of frames for electric spark image recognition under incandescent lamp interference

    图  10  闪光灯干扰条件下电火花图像像素灰度和分布

    Figure  10.  Distribution of the sum of pixel grayscale of electric spark image under flash interference

    图  11  闪光灯干扰条件下电火花图像识别帧数

    Figure  11.  Number of frames for electric spark image recognition under flash interference

    表  1  电火花图像识别结果

    Table  1.   Electric spark image recognition results

    干扰光源样本帧数电火花帧数识别帧数正确帧数误检帧数漏检帧数召回率/%精确率/%准确率/%
    无光源60028282800100100100
    日光灯5002829272196.4393.1099.40
    白炽灯8985659563010094.9199.67
    闪光灯80048484800100100100
    下载: 导出CSV
  • [1] 孙继平. 屯兰煤矿“2·22”特别重大瓦斯爆炸事故原因及教训[J]. 煤炭学报,2010,35(1):72-75. doi: 10.13225/j.cnki.jccs.2010.01.020

    SUN Jiping. The causes and lessons of "2.22" gas explosion disaster at Tunlan Coal Mine[J]. Journal of China Coal Society,2010,35(1):72-75. doi: 10.13225/j.cnki.jccs.2010.01.020
    [2] 孙继平,李小伟,徐旭,等. 矿井电火花及热动力灾害紫外图像感知方法研究[J]. 工矿自动化,2022,48(4):1-4,95. doi: 10.13272/j.issn.1671-251x.17917

    SUN Jiping,LI Xiaowei,XU Xu,et al. Research on ultraviolet image perception method of mine electric spark and thermal power disaster[J]. Journal of Mine Automation,2022,48(4):1-4,95. doi: 10.13272/j.issn.1671-251x.17917
    [3] 孙继平,李小伟,王建业. 基于图像邻帧像素灰度和的矿井电火花识别及报警方法研究[J]. 工矿自动化,2023,49(7):1-5. doi: 10.13272/j.issn.1671-251x.18141

    SUN Jiping,LI Xiaowei,WANG Jianye. Research on mine electric spark recognition and alarm method based on the sum of adjacent frame pixel grayscale of images[J]. Journal of Mine Automation,2023,49(7):1-5. doi: 10.13272/j.issn.1671-251x.18141
    [4] 孙继平. 煤矿瓦斯和煤尘爆炸感知报警与爆源判定方法研究[J]. 工矿自动化,2020,46(6):1-5,11. doi: 10.13272/j.issn.1671-251x.17617

    SUN Jiping. Research on method of coal mine gas and coal dust explosion perception alarm and explosion source judgment[J]. Industry and Mine Automation,2020,46(6):1-5,11. doi: 10.13272/j.issn.1671-251x.17617
    [5] 孙继平,钱晓红. 2004—2015年全国煤矿事故分析[J]. 工矿自动化,2016,42(11):1-5. doi: 10.13272/j.issn.1671-251x.2016.11.001

    SUN Jiping,QIAN Xiaohong. Analysis of coal mine accidents in China during 2004-2015[J]. Industry and Mine Automation,2016,42(11):1-5. doi: 10.13272/j.issn.1671-251x.2016.11.001
    [6] 孙继平. 互联网+煤矿监控与通信[M]. 北京: 煤炭工业出版社, 2016.

    SUN Jiping. Internet+coal mine monitoring and communication[M]. Beijing: China Coal Industry Press, 2016.
    [7] 孙继平. 煤矿事故分析与煤矿大数据和物联网[J]. 工矿自动化,2015,41(3):1-5. doi: 10.13272/j.issn.1671-251x.2015.03.001

    SUN Jiping. Accident analysis and big data and Internet of things in coal mine[J]. Industry and Mine Automation,2015,41(3):1-5. doi: 10.13272/j.issn.1671-251x.2015.03.001
    [8] 余星辰,李小伟.基于特征融合的煤矿瓦斯和煤尘爆炸声音识别方法[J/OL].煤炭学报:1-10 [2023-07-28]. https://doi.org/10.13225/j.cnki.jccs.2022.1421.

    YU Xingchen, LI Xiaowei. Sound recognition method of coal mine gas and coal dust explosion based on feature fusion[J/OL]. Journal of China Coal Society: 1-10 [2023-07-28]. https://doi.org/10.13225/j.cnki.jccs.2022.1421.
    [9] 孙继平,范伟强. 基于视频图像的瓦斯和煤尘爆炸感知报警及爆源判定方法[J]. 工矿自动化,2020,46(7):1-4,48. doi: 10.13272/j.issn.1671-251x.17629

    SUN Jiping,FAN Weiqiang. Gas and coal dust explosion perception alarm and explosion source judgment method based on video image[J]. Industry and Mine Automation,2020,46(7):1-4,48. doi: 10.13272/j.issn.1671-251x.17629
    [10] 徐晓冰,许可义,穆道明,等. 矿井LED灯的发热分析及光源设计[J]. 煤矿机械,2017,38(4):12-15. doi: 10.13436/j.mkjx.201704005

    XU Xiaobing,XU Keyi,MU Daoming,et al. Heat analysis and light source design of mine LED lamp[J]. Coal Mine Machinery,2017,38(4):12-15. doi: 10.13436/j.mkjx.201704005
    [11] 国家安全生产监督管理总局. 煤矿安全规程[M]. 北京: 煤炭工业出版社, 2022: 2-115.

    State Administration of Work Safety. Coal mine safety regulations[M]. Beijing: China Coal Industry Publishing House, 2022: 2-115.
    [12] 陈坤,张小良,陶光远,等. 影响静电火花放电的因素[J]. 中国粉体技术,2021,27(5):1-10. doi: 10.13732/j.issn.1008-5548.2021.05.001

    CHEN Kun,ZHANG Xiaoliang,TAO Guangyuan,et al. Influence factors of electrostatic spark discharge[J]. China Powder Science and Technology,2021,27(5):1-10. doi: 10.13732/j.issn.1008-5548.2021.05.001
    [13] 刘佳. 静电火花放电特性探究[D]. 大连: 大连理工大学, 2020.

    LIU Jia. Exploring the characteristics of electrostatic spark discharge[D]. Dalian: Dalian University of Technology, 2020.
    [14] 梁天宇. 浅谈电火花加工的要素[J]. 中国高新技术企业,2015(4):91-92. doi: 10.13535/j.cnki.11-4406/n.2015.0327

    LIANG Tianyu. Discussion on the elements of electrical discharge machining[J]. China High-Tech Enterprises,2015(4):91-92. doi: 10.13535/j.cnki.11-4406/n.2015.0327
    [15] GB 17509—2008 汽车及挂车转向信号灯配光性能[S].

    GB 17509-2008 Photometric characteristics of direction indicators for motor vehicles and their trailers[S].
    [16] GB 14886—2016 道路交通信号灯设置与安装规范[S].

    GB 14886-2016 Specifications for road traffic signal setting and installation[S].
    [17] GA/T 743—2016 闪光警告信号灯[S].

    GA/T 743-2016 Flash alarm signals[S].
    [18] JB/T 12707—2016 道路监控电子闪光装置[S].

    JB/T 12707-2016 Electronic flash apparatus for road monitoring[S].
    [19] 曹玉超,范伟强. 基于不同深度识别算法的矿井水位标尺刻度识别性能分析与研究[J]. 煤炭学报,2019,44(11):3529-3538. doi: 10.13225/j.cnki.jccs.2019.1047

    CAO Yuchao,FAN Weiqiang. Performance analysis and research of mine water level scale recognition based on different depth recognition algorithms[J]. Journal of China Coal Society,2019,44(11):3529-3538. doi: 10.13225/j.cnki.jccs.2019.1047
    [20] 余星辰,王云泉. 基于小波包能量的煤矿瓦斯和煤尘爆炸声音识别方法[J]. 工矿自动化,2023,49(1):131-139. doi: 10.13272/j.issn.1671-251x.18070

    YU Xingchen,WANG Yunquan. Coal mine gas and coal dust explosion sound recognition method based on wavelet packet energy[J]. Journal of Mine Automation,2023,49(1):131-139. doi: 10.13272/j.issn.1671-251x.18070
    [21] 王建业. 矿井电火花图像感知方法研究[D]. 北京: 中国矿业大学(北京), 2023: 11-15.

    WANG Jianye. Research on mine electric spark image perception method[D]. Beijing: China University of Mining and Technology-Beijing, 2023: 11-15.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  579
  • HTML全文浏览量:  58
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-07
  • 修回日期:  2023-08-16
  • 网络出版日期:  2023-09-04

目录

    /

    返回文章
    返回