留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射面技术及其在煤矿井下无线盲区覆盖的应用探讨

李世银 张鹏 闵明慧 李志伟 张梦迪 肖家杨

李世银,张鹏,闵明慧,等. 智能反射面技术及其在煤矿井下无线盲区覆盖的应用探讨[J]. 工矿自动化,2023,49(6):112-119.  doi: 10.13272/j.issn.1671-251x.18137
引用本文: 李世银,张鹏,闵明慧,等. 智能反射面技术及其在煤矿井下无线盲区覆盖的应用探讨[J]. 工矿自动化,2023,49(6):112-119.  doi: 10.13272/j.issn.1671-251x.18137
LI Shiyin, ZHANG Peng, MIN Minghui, et al. Discussion on intelligent reflecting surface technology and its application in wireless blind spot coverage in coal mines[J]. Journal of Mine Automation,2023,49(6):112-119.  doi: 10.13272/j.issn.1671-251x.18137
Citation: LI Shiyin, ZHANG Peng, MIN Minghui, et al. Discussion on intelligent reflecting surface technology and its application in wireless blind spot coverage in coal mines[J]. Journal of Mine Automation,2023,49(6):112-119.  doi: 10.13272/j.issn.1671-251x.18137

智能反射面技术及其在煤矿井下无线盲区覆盖的应用探讨

doi: 10.13272/j.issn.1671-251x.18137
基金项目: 国家自然科学基金资助项目(62101557,61771474);中国博士后科学基金项目(2022M713378);江苏省研究生科研与实践创新计划资助项目(KYCX23_2708);中国矿业大学研究生创新计划资助项目(2023WLKXJ097)。
详细信息
    作者简介:

    李世银(1971—),男,四川犍为人,教授,主要研究方向为无线通信和智能感知与精确定位等,E-mail:lishiying@cumt.edu.cn

  • 中图分类号: TD655

Discussion on intelligent reflecting surface technology and its application in wireless blind spot coverage in coal mines

  • 摘要: 针对现有无线通信技术在煤矿井下非视距场景中无线盲区覆盖所面临的难题,提出在煤矿井下无线通信系统中引入智能反射面(IRS)实现无线信号覆盖补盲的解决思路。分析了煤矿井下无线覆盖盲区问题的成因,包括封闭的矿井环境特征、普遍存在的非视距场景、发射功率与天线设置的安全约束。然而传统的煤矿井下无线覆盖盲区问题解决方案在硬件部署、维护成本、技术实现等方面存在局限性,无法真正满足矿山具体场景下的安全和高效通信需求。IRS因其低成本、低功耗、易部署和可扩展性等特点,在实现覆盖补盲方面具有性能优势。从硬件结构、辅助的信道模型和典型应用场景(精准定位、信能同传、无人机通信、边缘计算和物理层安全)3个方面介绍了IRS技术。提出了利用IRS技术优化井下无线盲区覆盖:通过在煤矿井下合理部署IRS,减少墙体对主要信号分量的吸收和散射,并利用IRS可调控的反射特性来优化信号的传播,以显著提高信号强度和覆盖范围。指出了IRS技术在煤矿井下无线通信中未来研究方向,包括IRS辅助的覆盖补盲系统的能量管理、基于人工智能的IRS辅助的井下通信、新型IRS技术应用和IRS灵活部署。

     

  • 图  1  IRS硬件结构

    Figure  1.  Hardware architecture of intelligent reflecting surface (IRS)

    图  2  IRS辅助的信道模型

    Figure  2.  IRS-aided signal model

    图  3  IRS典型应用场景

    Figure  3.  Typical application scenario of IRS

    图  4  IRS辅助井下无线通信系统

    Figure  4.  IRS-aided underground wireless communication system

  • [1] 杨帅. 煤矿井下智能化开采发展趋势[J]. 内蒙古煤炭经济,2023(3):160-162. doi: 10.3969/j.issn.1008-0155.2023.03.054

    YANG Shuai. Development trend of intelligent underground mining of coal mine[J]. Inner Mongolia Coal Economy,2023(3):160-162. doi: 10.3969/j.issn.1008-0155.2023.03.054
    [2] 申雪,刘驰,孔宁,等. 智慧矿山物联网技术发展现状研究[J]. 中国矿业,2018,27(7):120-125,143. doi: 10.12075/j.issn.1004-4051.2018.07.031

    SHEN Xue,LIU Chi,KONG Ning,et al. Research on the technical development status of the intelligent mine base on Internet of things[J]. China Mining Magazine,2018,27(7):120-125,143. doi: 10.12075/j.issn.1004-4051.2018.07.031
    [3] MA Long. Study on intelligent mine based on the application of 5G wireless communication system[J]. IOP Conference Series:Earth and Environmental Science,2020,588(3):032050. DOI: 10.1088/1755-1315/558/3/032050.
    [4] 黄磊. 智慧化安全监测系统在矿山采矿工程中的应用[J]. 中国金属通报,2023(1):29-31.

    HUANG Lei. Application of intelligent safety monitoring system in mining engineering[J]. China Metal Bulletin,2023(1):29-31.
    [5] 胡宏泽,杜志刚,储楠,等. 基于智慧矿山平台的人员定位系统关键技术[J]. 煤矿安全,2021,52(11):134-138. doi: 10.13347/j.cnki.mkaq.2021.11.023

    HU Hongze,DU Zhigang,CHU Nan,et al. Key technologies of personnel positioning system based on wisdom mine platform[J]. Safety in Coal Mines,2021,52(11):134-138. doi: 10.13347/j.cnki.mkaq.2021.11.023
    [6] FARJOW W,RAAHEMIFAR K,FERNANDO X. Novel wireless channels characterization model for underground mines[J]. Applied Mathematical Modelling,2015,39(19):5997-6007. doi: 10.1016/j.apm.2015.01.043
    [7] CHEN Kansong,WANG Chenqi,CHEN Liangqing,et al. Smart safety early warning system of coal mine production based on WSNs[J]. Safety Science,2020,124:104609. DOI: 10.1016/j.ssci.2020.104609.
    [8] MABROUK I B,TALBI L,MNASRI B,et al. Experimental characterization of a wireless MIMO channel at 2.4 GHz in underground mine gallery[J]. Electromagnetics Research Letters,2012,29:97-106. doi: 10.2528/PIERL11122904
    [9] 史艳楠. 煤矿井下漏缆网络信道建模与故障诊断方法研究[D]. 北京: 中国矿业大学(北京), 2018.

    SHI Yannan. Research on channel modeling and fault diagnosis of leaky coaxial cable network in underground coal mine[D]. Beijing: China University of Mining and Technology-Beijing, 2018.
    [10] WU Qingqing,ZHANG Shuowen,ZHENG Beixiong,et al. Intelligent reflecting surface aided wireless communications:a tutorial[J]. IEEE Transactions on Communications,2021,69(5):3313-3351. doi: 10.1109/TCOMM.2021.3051897
    [11] VAN T,PHU H,IC P. IRS-aided wireless communication:from physics to channel modeling and characterization[J]. IEEE Access,2023,11:3184-3197. doi: 10.1109/ACCESS.2023.3234762
    [12] 齐峰,岳殿武,孙玉. 面向6G的智能反射面无线通信综述[J]. 移动通信,2022,46(4):65-73. doi: 10.3969/j.issn.1006-1010.2022.04.012

    QI Feng,YUE Dianwu,SUN Yu. A survey of intelligent reflecting surface wireless communications toward 6G[J]. Mobile Communications,2022,46(4):65-73. doi: 10.3969/j.issn.1006-1010.2022.04.012
    [13] KISSELEFF S,CHATZINOTAS S,OTTERSTEN B. Reconfigurable intelligent surfaces in challenging environments:underwater,underground,industrial and disaster[J]. IEEE Access,2021,9:150214-150233. doi: 10.1109/ACCESS.2021.3125461
    [14] RANJAN A,MISRA P,DWIVEDI B,et al. Studies on propagation characteristics of radio waves for wireless networks in underground coal mines[J]. Wireless Personal Communications,2017,97(2):2819-2832. doi: 10.1007/s11277-017-4636-y
    [15] RANJAN A, SAHU H B, MISRA P. Modeling and measurements for wireless communication networks in underground mine environments[J]. Measurement, 2020, 149. DOI: 10.1016/j.measurement.2019.106980.
    [16] JAVAID F,WANG Anyi,SANA M U,et al. An optimized approach to channel modeling and impact of deteriorating factors on wireless communication in underground mines[J]. Sensors,2021,21(17):5905. doi: 10.3390/s21175905
    [17] GB/T 3836.1—2021爆炸性环境 第1部分: 设备 通用要求[S].

    GB/T 3836.1-2021 Explosive atmospheres-Part 1: Equipment-General requirements[S].
    [18] XU Jingjing,YANG Wei,ZHANG Linyuan,et al. Multi-sensor detection with particle swarm optimization for time-frequency coded cooperative WSNs based on MC-CDMA for underground coal mines[J]. Sensors,2015,15(9):21134-21152. doi: 10.3390/s150921134
    [19] WU Qingqing,ZHANG Rui. Towards smart and reconfigurable environment:intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine,2020,58(1):106-112. doi: 10.1109/MCOM.001.1900107
    [20] FENG Keming,WANG Qisheng,LI Xiao,et al. Deep reinforcement learning based intelligent reflecting surface optimization for MISO communication systems[J]. IEEE Wireless Communications Letters,2020,9(5):745-749. doi: 10.1109/LWC.2020.2969167
    [21] YANG Helin,XIONG Zehui,ZHAO Jun,et al. Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications[J]. IEEE Transactions on Wireless Communications,2021,20(1):375-388. doi: 10.1109/TWC.2020.3024860
    [22] SUR S N,SINGH A K,KANDAR D,et al. Intelligent reflecting surface assisted localization:opportunities and challenges[J]. Electronics,2022,11(9):1411. DOI: 10.3390/electronics11091411.
    [23] DARDARI D, DECARLI N, GUERRA A, et al. Localization in NLOS conditions using large reconfigurable intelligent surfaces[C]. IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, Lucca, 2021. DOI: 10.1109/SPAWC51858.2021.9593241.
    [24] WU Qingqing,GUAN Xinrong,ZHANG Rui. Intelligent reflecting surface-aided wireless energy and information transmission:an overview[J]. Proceedings of the IEEE,2022,110(1):150-170. doi: 10.1109/JPROC.2021.3121790
    [25] PAN Cunhua,REN Hong,WANG Kezhi,et al. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications,2020,38(8):1719-1734. doi: 10.1109/JSAC.2020.3000802
    [26] LI Sixian,DUO Bin,YUAN Xiaojun,et al. Reconfigurable intelligent surface assisted UAV communication:joint trajectory design and passive beamforming[J]. IEEE Wireless Communications Letters,2020,9(5):716-720. doi: 10.1109/LWC.2020.2966705
    [27] LIU Yaqiong,PENG Mugen,SHOU Guochu,et al. Toward edge intelligence:multiaccess edge computing for 5G and Internet of things[J]. IEEE Internet of Things Journal,2020,7(8):6722-6747. doi: 10.1109/JIOT.2020.3004500
    [28] WANG Zhaoying,WEI Yifei,FENG Zhiyong,et al. Resource management and reflection optimization for intelligent reflecting surface assisted multi-access edge computing using deep reinforcement learning[J]. IEEE Transactions on Wireless Communications,2023,22(2):1175-1186. doi: 10.1109/TWC.2022.3202948
    [29] 吴振东,马建军,张玉萍,等. 太赫兹通信物理层安全技术发展研究[J]. 太赫兹科学与电子信息学报,2023,21(3):301-310.

    WU Zhendong,MA Jianjun,ZHANG Yuping,et al. Development of physical layer security communication in terahertz band[J]. Journal of Terahertz Science and Electronic Information Technology,2023,21(3):301-310.
    [30] CUI Miao,ZHANG Guangchi,ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters,2019,8(5):1410-1414. doi: 10.1109/LWC.2019.2919685
    [31] XIAO Liang,HONG Siyuan,XU Shiyu,et al. IRS-aided energy-efficient secure WBAN transmission based on deep reinforcement learning[J]. IEEE Transactions on Communications,2022,70(6):4162-4174. doi: 10.1109/TCOMM.2022.3169813
    [32] KUNSEI H,BIALKOWSKI K S,ALAM M S,et al. Improved communications in underground mines using reconfigurable antennas[J]. IEEE Transactions on Antennas and Propagation,2018,66(12):7505-7510. doi: 10.1109/TAP.2018.2869250
    [33] WU Qingqing,ZHANG Rui. Weighted sum power maximization for intelligent reflecting surface aided SWIPT[J]. IEEE Wireless Communications Letters,2020,9(5):586-590. doi: 10.1109/LWC.2019.2961656
    [34] WU Qingqing,ZHANG Rui. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints[J]. IEEE Journal on Selected Areas in Communications,2020,38(8):1735-1748. doi: 10.1109/JSAC.2020.3000807
    [35] ZARGARI S,KHALILI A,WU Qingqing,et al. Max-min fair energy-efficient beamforming design for intelligent reflecting surface-aided SWIPT systems with non-linear energy harvesting model[J]. IEEE Transactions on Vehicular Technology,2021,70(6):5848-5864. doi: 10.1109/TVT.2021.3077477
    [36] HUANG Chongwen,MO Ronghong,YUEN C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications,2020,38(8):1839-1850. doi: 10.1109/JSAC.2020.3000835
    [37] ELBIR A M,COLERI S. Federated learning for channel estimation in conventional and RIS-assisted massive MIMO[J]. IEEE Transactions on Wireless Communications,2020,21(6):4255-4268.
    [38] KANG Zhenyu, YOU Changsheng, ZHANG Rui. Active-IRS-aided wireless communication: fundamentals, designs and open issues[J/OL]. ArXiv, 2023. https://doi.org/10.48550/arXiv.2301.04311.
    [39] KHOSHAFA M H,NGATCHED T M N,AHMED M H,et al. Active reconfigurable intelligent surfaces-aided wireless communication system[J]. IEEE Communications Letters,2021,25(11):3699-3703. doi: 10.1109/LCOMM.2021.3110714
    [40] ZHANG Hongliang,ZENG Shuhao,DI Boya,et al. Intelligent omni-surfaces for full-dimensional wireless communications:principles,technology,and implementation[J]. IEEE Communications Magazine,2022,60(2):39-45. doi: 10.1109/MCOM.001.201097
    [41] ZENG Shuhao,ZHANG Hongliang,DI Boya,et al. Reconfigurable intelligent surface (RIS) assisted wireless coverage extension:RIS orientation and location optimization[J]. IEEE Communications Letters,2021,25(1):269-273. doi: 10.1109/LCOMM.2020.3025345
  • 加载中
图(4)
计量
  • 文章访问数:  928
  • HTML全文浏览量:  104
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 修回日期:  2023-06-29
  • 网络出版日期:  2023-07-12

目录

    /

    返回文章
    返回