[1] |
杨帅. 煤矿井下智能化开采发展趋势[J]. 内蒙古煤炭经济,2023(3):160-162. doi: 10.3969/j.issn.1008-0155.2023.03.054YANG Shuai. Development trend of intelligent underground mining of coal mine[J]. Inner Mongolia Coal Economy,2023(3):160-162. doi: 10.3969/j.issn.1008-0155.2023.03.054
|
[2] |
申雪,刘驰,孔宁,等. 智慧矿山物联网技术发展现状研究[J]. 中国矿业,2018,27(7):120-125,143. doi: 10.12075/j.issn.1004-4051.2018.07.031SHEN Xue,LIU Chi,KONG Ning,et al. Research on the technical development status of the intelligent mine base on Internet of things[J]. China Mining Magazine,2018,27(7):120-125,143. doi: 10.12075/j.issn.1004-4051.2018.07.031
|
[3] |
MA Long. Study on intelligent mine based on the application of 5G wireless communication system[J]. IOP Conference Series:Earth and Environmental Science,2020,588(3):032050. DOI: 10.1088/1755-1315/558/3/032050.
|
[4] |
黄磊. 智慧化安全监测系统在矿山采矿工程中的应用[J]. 中国金属通报,2023(1):29-31.HUANG Lei. Application of intelligent safety monitoring system in mining engineering[J]. China Metal Bulletin,2023(1):29-31.
|
[5] |
胡宏泽,杜志刚,储楠,等. 基于智慧矿山平台的人员定位系统关键技术[J]. 煤矿安全,2021,52(11):134-138. doi: 10.13347/j.cnki.mkaq.2021.11.023HU Hongze,DU Zhigang,CHU Nan,et al. Key technologies of personnel positioning system based on wisdom mine platform[J]. Safety in Coal Mines,2021,52(11):134-138. doi: 10.13347/j.cnki.mkaq.2021.11.023
|
[6] |
FARJOW W,RAAHEMIFAR K,FERNANDO X. Novel wireless channels characterization model for underground mines[J]. Applied Mathematical Modelling,2015,39(19):5997-6007. doi: 10.1016/j.apm.2015.01.043
|
[7] |
CHEN Kansong,WANG Chenqi,CHEN Liangqing,et al. Smart safety early warning system of coal mine production based on WSNs[J]. Safety Science,2020,124:104609. DOI: 10.1016/j.ssci.2020.104609.
|
[8] |
MABROUK I B,TALBI L,MNASRI B,et al. Experimental characterization of a wireless MIMO channel at 2.4 GHz in underground mine gallery[J]. Electromagnetics Research Letters,2012,29:97-106. doi: 10.2528/PIERL11122904
|
[9] |
史艳楠. 煤矿井下漏缆网络信道建模与故障诊断方法研究[D]. 北京: 中国矿业大学(北京), 2018.SHI Yannan. Research on channel modeling and fault diagnosis of leaky coaxial cable network in underground coal mine[D]. Beijing: China University of Mining and Technology-Beijing, 2018.
|
[10] |
WU Qingqing,ZHANG Shuowen,ZHENG Beixiong,et al. Intelligent reflecting surface aided wireless communications:a tutorial[J]. IEEE Transactions on Communications,2021,69(5):3313-3351. doi: 10.1109/TCOMM.2021.3051897
|
[11] |
VAN T,PHU H,IC P. IRS-aided wireless communication:from physics to channel modeling and characterization[J]. IEEE Access,2023,11:3184-3197. doi: 10.1109/ACCESS.2023.3234762
|
[12] |
齐峰,岳殿武,孙玉. 面向6G的智能反射面无线通信综述[J]. 移动通信,2022,46(4):65-73. doi: 10.3969/j.issn.1006-1010.2022.04.012QI Feng,YUE Dianwu,SUN Yu. A survey of intelligent reflecting surface wireless communications toward 6G[J]. Mobile Communications,2022,46(4):65-73. doi: 10.3969/j.issn.1006-1010.2022.04.012
|
[13] |
KISSELEFF S,CHATZINOTAS S,OTTERSTEN B. Reconfigurable intelligent surfaces in challenging environments:underwater,underground,industrial and disaster[J]. IEEE Access,2021,9:150214-150233. doi: 10.1109/ACCESS.2021.3125461
|
[14] |
RANJAN A,MISRA P,DWIVEDI B,et al. Studies on propagation characteristics of radio waves for wireless networks in underground coal mines[J]. Wireless Personal Communications,2017,97(2):2819-2832. doi: 10.1007/s11277-017-4636-y
|
[15] |
RANJAN A, SAHU H B, MISRA P. Modeling and measurements for wireless communication networks in underground mine environments[J]. Measurement, 2020, 149. DOI: 10.1016/j.measurement.2019.106980.
|
[16] |
JAVAID F,WANG Anyi,SANA M U,et al. An optimized approach to channel modeling and impact of deteriorating factors on wireless communication in underground mines[J]. Sensors,2021,21(17):5905. doi: 10.3390/s21175905
|
[17] |
GB/T 3836.1—2021爆炸性环境 第1部分: 设备 通用要求[S].GB/T 3836.1-2021 Explosive atmospheres-Part 1: Equipment-General requirements[S].
|
[18] |
XU Jingjing,YANG Wei,ZHANG Linyuan,et al. Multi-sensor detection with particle swarm optimization for time-frequency coded cooperative WSNs based on MC-CDMA for underground coal mines[J]. Sensors,2015,15(9):21134-21152. doi: 10.3390/s150921134
|
[19] |
WU Qingqing,ZHANG Rui. Towards smart and reconfigurable environment:intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine,2020,58(1):106-112. doi: 10.1109/MCOM.001.1900107
|
[20] |
FENG Keming,WANG Qisheng,LI Xiao,et al. Deep reinforcement learning based intelligent reflecting surface optimization for MISO communication systems[J]. IEEE Wireless Communications Letters,2020,9(5):745-749. doi: 10.1109/LWC.2020.2969167
|
[21] |
YANG Helin,XIONG Zehui,ZHAO Jun,et al. Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications[J]. IEEE Transactions on Wireless Communications,2021,20(1):375-388. doi: 10.1109/TWC.2020.3024860
|
[22] |
SUR S N,SINGH A K,KANDAR D,et al. Intelligent reflecting surface assisted localization:opportunities and challenges[J]. Electronics,2022,11(9):1411. DOI: 10.3390/electronics11091411.
|
[23] |
DARDARI D, DECARLI N, GUERRA A, et al. Localization in NLOS conditions using large reconfigurable intelligent surfaces[C]. IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, Lucca, 2021. DOI: 10.1109/SPAWC51858.2021.9593241.
|
[24] |
WU Qingqing,GUAN Xinrong,ZHANG Rui. Intelligent reflecting surface-aided wireless energy and information transmission:an overview[J]. Proceedings of the IEEE,2022,110(1):150-170. doi: 10.1109/JPROC.2021.3121790
|
[25] |
PAN Cunhua,REN Hong,WANG Kezhi,et al. Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Journal on Selected Areas in Communications,2020,38(8):1719-1734. doi: 10.1109/JSAC.2020.3000802
|
[26] |
LI Sixian,DUO Bin,YUAN Xiaojun,et al. Reconfigurable intelligent surface assisted UAV communication:joint trajectory design and passive beamforming[J]. IEEE Wireless Communications Letters,2020,9(5):716-720. doi: 10.1109/LWC.2020.2966705
|
[27] |
LIU Yaqiong,PENG Mugen,SHOU Guochu,et al. Toward edge intelligence:multiaccess edge computing for 5G and Internet of things[J]. IEEE Internet of Things Journal,2020,7(8):6722-6747. doi: 10.1109/JIOT.2020.3004500
|
[28] |
WANG Zhaoying,WEI Yifei,FENG Zhiyong,et al. Resource management and reflection optimization for intelligent reflecting surface assisted multi-access edge computing using deep reinforcement learning[J]. IEEE Transactions on Wireless Communications,2023,22(2):1175-1186. doi: 10.1109/TWC.2022.3202948
|
[29] |
吴振东,马建军,张玉萍,等. 太赫兹通信物理层安全技术发展研究[J]. 太赫兹科学与电子信息学报,2023,21(3):301-310.WU Zhendong,MA Jianjun,ZHANG Yuping,et al. Development of physical layer security communication in terahertz band[J]. Journal of Terahertz Science and Electronic Information Technology,2023,21(3):301-310.
|
[30] |
CUI Miao,ZHANG Guangchi,ZHANG Rui. Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters,2019,8(5):1410-1414. doi: 10.1109/LWC.2019.2919685
|
[31] |
XIAO Liang,HONG Siyuan,XU Shiyu,et al. IRS-aided energy-efficient secure WBAN transmission based on deep reinforcement learning[J]. IEEE Transactions on Communications,2022,70(6):4162-4174. doi: 10.1109/TCOMM.2022.3169813
|
[32] |
KUNSEI H,BIALKOWSKI K S,ALAM M S,et al. Improved communications in underground mines using reconfigurable antennas[J]. IEEE Transactions on Antennas and Propagation,2018,66(12):7505-7510. doi: 10.1109/TAP.2018.2869250
|
[33] |
WU Qingqing,ZHANG Rui. Weighted sum power maximization for intelligent reflecting surface aided SWIPT[J]. IEEE Wireless Communications Letters,2020,9(5):586-590. doi: 10.1109/LWC.2019.2961656
|
[34] |
WU Qingqing,ZHANG Rui. Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints[J]. IEEE Journal on Selected Areas in Communications,2020,38(8):1735-1748. doi: 10.1109/JSAC.2020.3000807
|
[35] |
ZARGARI S,KHALILI A,WU Qingqing,et al. Max-min fair energy-efficient beamforming design for intelligent reflecting surface-aided SWIPT systems with non-linear energy harvesting model[J]. IEEE Transactions on Vehicular Technology,2021,70(6):5848-5864. doi: 10.1109/TVT.2021.3077477
|
[36] |
HUANG Chongwen,MO Ronghong,YUEN C. Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning[J]. IEEE Journal on Selected Areas in Communications,2020,38(8):1839-1850. doi: 10.1109/JSAC.2020.3000835
|
[37] |
ELBIR A M,COLERI S. Federated learning for channel estimation in conventional and RIS-assisted massive MIMO[J]. IEEE Transactions on Wireless Communications,2020,21(6):4255-4268.
|
[38] |
KANG Zhenyu, YOU Changsheng, ZHANG Rui. Active-IRS-aided wireless communication: fundamentals, designs and open issues[J/OL]. ArXiv, 2023. https://doi.org/10.48550/arXiv.2301.04311.
|
[39] |
KHOSHAFA M H,NGATCHED T M N,AHMED M H,et al. Active reconfigurable intelligent surfaces-aided wireless communication system[J]. IEEE Communications Letters,2021,25(11):3699-3703. doi: 10.1109/LCOMM.2021.3110714
|
[40] |
ZHANG Hongliang,ZENG Shuhao,DI Boya,et al. Intelligent omni-surfaces for full-dimensional wireless communications:principles,technology,and implementation[J]. IEEE Communications Magazine,2022,60(2):39-45. doi: 10.1109/MCOM.001.201097
|
[41] |
ZENG Shuhao,ZHANG Hongliang,DI Boya,et al. Reconfigurable intelligent surface (RIS) assisted wireless coverage extension:RIS orientation and location optimization[J]. IEEE Communications Letters,2021,25(1):269-273. doi: 10.1109/LCOMM.2020.3025345
|