Research on mine 5G network slicing technology
-
摘要: 网络切片是5G网络的一项重要技术,现有矿用5G研究主要集中于系统架构及应用场景,缺乏对切片技术具体实现方案的研究。针对该问题,通过分析矿用5G网络的基本结构及智能矿山的应用需求,提出利用FlexE的通道化功能实现传输网的资源分配及业务隔离,从而在同一网络基础设施上构建多个按需定制的专用逻辑网络,即网络切片。根据当前矿用信息通信系统及智能矿山应用情况,提出矿用5G网络基础切片划分+基于带宽权重的传输资源分配方法,将网络划分为低时延业务、大带宽业务、工业环网业务、特定业务(无人化协同控制)及预留业务5类切片,并通过进一步的虚拟专用网(VPN)划分方法,设计差异化的带宽权重,以确保充足的传输资源,避免信道拥塞。根据不同业务对时延、带宽的要求,定义具体的5G QoS标志符(5QI),并根据5QI进行业务映射及隔离,为各类业务提供所需的服务级别。在实验室条件下,对矿用5G网络系统的业务调度时间和端到端时延2项指标进行测试,结果表明:网络切片与传统的尽力而为服务模型相比,能够实现更加高效的业务调度,在高负载的场景下,平均调度时间减少了10.9%;在同一业务切片内,矿用5G网络的平均端到端时延为10.33 ms,为无人化协同控制等业务的实施提供了必要条件。Abstract: Network slicing is an important technology in 5G networks. The existing research on mine 5G mainly focuses on system architecture and application scenarios, lacking specific implementation solutions for slicing technology. In order to solve the above problem, by analyzing the basic structure of mine 5G networks and the application requirements of intelligent mines, it is proposed to use the channelization function of FlexE to achieve resource allocation and business isolation in the transmission network. It constructs multiple on-demand customized dedicated logical networks on the same network infrastructure, namely network slicing. According to the current applications of mine information communication systems and intelligent mines, a method of mine 5G network basic slicing+transmission resource allocation based on bandwidth weight is proposed. The network is divided into five types of slicing: low delay service, large bandwidth service, industrial ring network service, specific service (unmanned cooperative control) and reserved service. Through further virtual private network (VPN) division method, differentiated bandwidth weight is designed to ensure sufficient transmission resources and avoid channel congestion. The specific 5G QoS identifiers (5QI) are defined based on the requirements of different services for latency and bandwidth. The mapping and isolation based on 5QI are obtained to provide the required service levels for various businesses. Under laboratory conditions, two indicators of business scheduling time and end-to-end delay are tested for mine 5G network systems. The results show that network slicing can achieve more efficient business scheduling than traditional best-effort service models. In high-load scenarios, the average scheduling time is reduced by 10.9%. Within the same business slice, the average end-to-end delay of the mine 5G network is 10.33 ms, providing necessary conditions for the implementation of unmanned collaborative control and other services.
-
表 1 典型终端的网络需求
Table 1. Network requirements of typical terminals
序号 终端类型 速率 时延
要求/ms上行 下行 1 CPE 100 kbit/s 100 kbit/s 25 2 5G手机 100 kbit/s 100 Mbit/s 25 3 矿压传感器 100 kbit/s 100 kbit/s 100 4 车载终端 100 kbit/s 100 kbit/s 25 表 2 常见业务类型及权重值
Table 2. Common service types and weight values
序号 矿用系统及应用 权重等级 权重值 1 矿用5G通信系统 1 1.0 2 矿用4G通信系统 3 安全监控系统 4 定位系统 5 广播系统 6 调度指挥系统 7 供电系统 8 特定业务(无人化协同控制) 9 自动风门系统 2 0.9 10 主运胶带系统 11 矿压监测系统 12 水文监测系统 13 视频监控系统 3 0.8 14 WiFi通信系统 15 其他环网非安全类业务 4 0.7 -
[1] 胡坚波. 《“十四五”信息通信行业发展规划》解读[J]. 通信世界,2021(23):11-13.HU Jianbo. Interpretation of the "14th Five-Year Plan" for the Development of Information and Communication Industry[J]. Communications World,2021(23):11-13. [2] 王国法,杜毅博,任怀伟,等. 智能化煤矿顶层设计研究与实践[J]. 煤炭学报,2020,45(6):1909-1924.WANG Guofa,DU Yibo,REN Huaiwei,et al. Top level design and practice of smart coal mines[J]. Journal of China Coal Society,2020,45(6):1909-1924. [3] CHANG Zhaozhao,GU Qinghua,LU Caiwu,et al. 5G private network deployment optimization based on RWSSA in open-pit mine[J]. IEEE Transactions on Industrial Informatics,2022,18(8):5466-5476. doi: 10.1109/TII.2021.3132041 [4] 3GPP TS 23.501: System architecture for the 5G system[S]. [5] 孙继平. 煤矿智能化与矿用5G[J]. 工矿自动化,2020,46(8):1-7.SUN Jiping. Coal mine intelligence and mine-used 5G[J]. Industry and Mine Automation,2020,46(8):1-7. [6] 王国法,赵国瑞,胡亚辉. 5G技术在煤矿智能化中的应用展望[J]. 煤炭学报,2020,45(1):16-23.WANG Guofa,ZHAO Guorui,HU Yahui. Application prospect of 5G technology in coal mine intelligence[J]. Journal of China Coal Society,2020,45(1):16-23. [7] 张立亚. 基于5G通信的矿山可视化智能监控技术[J]. 煤炭技术,2022,41(1):191-194.ZHANG Liya. Mine visual intelligent monitoring technology based on 5G communication[J]. Coal Technology,2022,41(1):191-194. [8] 李晨鑫,张立亚. 煤矿井下网联式自动驾驶技术研究[J]. 工矿自动化,2022,48(6):49-55.LI Chenxin,ZHANG Liya. Research on the network connected automatic driving technology in underground coal mine[J]. Journal of Mine Automation,2022,48(6):49-55. [9] 张蓄金,乌岚. 多传感器信息融合技术在煤自燃安全预警系统中的应用[J]. 煤炭技术,2022,41(6):156-158.ZHANG Xujin,WU Lan. Application of multi-sensor information fusion technology in coal spontaneous combustion safety early warning system[J]. Coal Technology,2022,41(6):156-158. [10] ZHANG Shuliang. An overview of network slicing for 5G[J]. IEEE Wireless Communications,2019,26(3):111-117. doi: 10.1109/MWC.2019.1800234 [11] 王睿,张克落. 5G网络切片综述[J]. 南京邮电大学学报(自然科学版),2018,38(5):19-27.WANG Rui,ZHANG Keluo. Survey of 5G network slicing[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition),2018,38(5):19-27. [12] 胡亚辉,赵国瑞,吴群英. 面向煤矿智能化的5G关键技术研究[J]. 煤炭科学技术,2022,50(2):223-230.HU Yahui,ZHAO Guorui,WU Qunying. Research on 5G key technologies in intelligent coal mining[J]. Coal Science and Technology,2022,50(2):223-230. [13] 霍振龙,张袁浩. 5G通信技术及其在煤矿的应用构想[J]. 工矿自动化,2020,46(3):1-5.HUO Zhenlong,ZHANG Yuanhao. 5G communication technology and its application conception in coal mine[J]. Industry and Mine Automation,2020,46(3):1-5. [14] 孟庆勇. 5G技术在煤矿井下应用架构探讨[J]. 工矿自动化,2020,46(7):28-33.MENG Qingyong. Probe on 5G architecture applied in coal mine underground[J]. Industry and Mine Automation,2020,46(7):28-33. [15] 李立平,李振东,方琰崴. 5G专网技术解决方案和建设策略[J]. 移动通信,2020,44(3):8-13.LI Liping,LI Zhendong,FANG Yanwei. The technical solutions and construction strategies for 5G private networks[J]. Mobile Communications,2020,44(3):8-13. [16] KHAN R,KUMAR P,JAYAKODY D N K,et al. A survey on security and privacy of 5G technologies:potential solutions,recent advancements,and future directions[J]. IEEE Communications Surveys & Tutorials,2020,22(1):196-248. [17] 秦鹏太,李爱华,姜怡,等. 5G-Advanced核心网技术综述[J]. 移动通信,2022,46(1):58-66.QIN Pengtai,LI Aihua,JIANG Yi,et al. Survey of 5G-Advanced core network technologies[J]. Mobile Communications,2022,46(1):58-66. [18] 项弘禹,肖扬文,张贤,等. 5G边缘计算和网络切片技术[J]. 电信科学,2017,33(6):54-63.XIANG Hongyu,XIAO Yangwen,ZHANG Xian,et al. Edge computing and network slicing technology in 5G[J]. Telecommunications Science,2017,33(6):54-63. [19] AFOLABI I,TALEB T,SAMDANIS K,et al. Network slicing and softwarization:a survey on principles,enabling technologies,and solutions[J]. IEEE Communications Surveys & Tutorials,2018,20(3):2429-2453. [20] 段宏,郭昌华,刘文钊. FlexE技术及其在5G承载网中的应用探析[J]. 邮电设计技术,2020(3):80-85.DUAN Hong,GUO Changhua,LIU Wenzhao. FlexE technology and its application in 5G bearer network[J]. Designing Techniques of Posts and Telecommunications,2020(3):80-85. [21] EIRA A,PEREIRA A,PIRES J,et al. On the efficiency of flexible ethernet client architectures in optical transport networks[J]. Journal of Optical Communications and Networking,2018,10(1):133-143. doi: 10.1364/JOCN.10.00A133