The current status and development trend of post-disaster rescue life detectors
-
摘要: 生命探测仪作为灾后及时救援的一种设备,在定位、探索与搜寻生命体方面发挥着不可替代的作用。分析了目前所使用的生命探测仪即雷达生命探测仪、音频生命探测仪、红外生命探测仪及其他种类生命探测仪的工作原理、技术特点、使用场景及优缺点,并结合实际应用指出上述生命探测仪存在的问题:① 探测技术单一,综合集成化不高。② 探测方式传统、设备智能化程度不足。③ 探测仪零件未统型,设备维修困难。④ 部分生命探测仪体积较大,携带不便,影响救援效率。针对现有的不足和问题,提出生命探测仪的发展趋势:① 提高生命探测仪的集成程度,设计使用采集信息的多源化融合的生命探测装置,使用多种信息源来进行生命信息的获取探测。② 提高生命探测仪的智能化水平,赋予生命探测仪部分自主决策权,降低由于操作人员操作不当导致的生命探测误差。③ 设计模块化的生命探测仪,并制定相关的标准规程,对同种生命探测仪的零件进行统型,降低生命探测仪的维修和保养难度。④ 提高生命探测仪的电路板设计精度,充分利用空间构造,在不缩减生命探测仪功能情况下减小体积,提高便携性。Abstract: As a device for timely rescue after disasters, life detectors play an irreplaceable role in locating, exploring, and searching for living organisms. This paper analyzes the working principles, technical features, usage scenarios, advantages and disadvantages of the currently used life detectors. The detectors include radar life detectors, audio life detectors, infrared life detectors, and other types of life detectors. Combined with practical applications, this paper points out the problems of the above life detectors. ① The detection technology is single and the comprehensive integration is low. ② The detection methods are traditional and equipment intelligence is insufficient. ③ The parts of the detector are not standardized, making equipment maintenance difficult. ④ Some life detectors have a relatively large structure and are inconvenient to carry, which affects rescue efficiency. In response to the existing shortcomings and problems, the development trends of life detectors are proposed. ① It is suggested to improve the integration level of life detectors. It is suggested to design life detection devices that use multi-source fusion to collect information, and use multiple information sources to obtain and detect life information. ② It is suggested to improve the intelligence level of life detectors, give them partial autonomy in decision-making, and reduce errors in life detection caused by improper operation by operators. ③ It is suggested to design modular life detectors and develop relevant standard procedures to standardize the components of the same type of life detector. It will reduce the difficulty of repair and maintenance of life detectors. ④ It is suggested to improve the circuit board design precision of the life detector, fully utilize spatial structure, reduce volume and improve portability without reducing the functionality of the life detector.
-
表 1 不同种类的生命探测仪的特点对比
Table 1. Characteristics comparison of different types of life detectors
生命探测仪 工作原理 主动/被动式 有/无发射
信号源影响因素 适用场景 雷达生命探测仪 电磁波的反射回波分析 主动式 有 金属物质及介电常
数较大的其他物质被困人员、被困场景金属及高介电常数物质少 音频生命探测仪 声波振动波的接收探测 被动式 无 外界环境的振动影响 外界环境相对安静,无大型器械、车辆等干扰因素 红外生命探测仪 人体辐射热量和环境的差异 被动式 无 温度 环境温度不高,被困人员被困时间短 静电场生命探测仪 静电场相吸相斥原理 被动式 无 救援场所无较强磁场干扰 救援场景较狭窄,仪器不便进入,且救援场所没有较强磁场 气敏生命探测仪 狭小空间内CO2浓度变化 被动式 无 环境中CO2浓度 环境密封且无空气流动 -
[1] 刘传正,王建新. 自然灾害的基本型式及防控对策研究[J]. 岩石力学与工程学报,2023,42(2):275-291.LIU Chuanzheng,WANG Jianxin. Basic patterns of natural disasters and some countermeasures for risk mitigation[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):275-291. [2] NARAYANAN R G L,IBE O C. A joint network for disaster recovery and search and rescue operations[J]. Computer Networks,2012,56(14):3347-3373. doi: 10.1016/j.comnet.2012.05.012 [3] 李娟,李睿,苟扬. 专利文献计量视阈下的灾害救援技术发展态势[J]. 中国发明与专利,2022,19(10):5-11.LI Juan,LI Rui,GOU Yang. Development trend of disaster rescue technology from the perspective of patent bibliometrics[J]. China Invention & Patent,2022,19(10):5-11. [4] 盛亦男,杨旭宇. 自然灾害冲击、政府赈灾重建与农村劳动力流动[J]. 人口研究,2021,45(6):29-44.SHENG Yinan,YANG Xuyu. The influence of natural disaster shocks on rural labor migration and government's reaction in China[J]. Population Research,2021,45(6):29-44. [5] 杨根云. 地震滑坡易发性评价及震后潜在泥石流沟判别[D]成都: 成都理工大学, 2018.YANG Genyun. Assessment of co-seismic landslide susceptibility and post-earthquake debris flow-prone catchments identification[D]. Chengdu: Chengdu University of Technology, 2018. [6] 乔建平,王萌,吴彩燕,等. 汶川地震扰动区小流域滑坡泥石流风险评估——以都江堰白沙河流域为例[J]. 中国地质灾害与防治学报,2018,29(4):1-9.QIAO Jianping,WANG Meng,WU Caiyan,et al. Landslide and debris flow risk assessment for small water sheels in the Wenchuan earthquake disturbance area:taking the Baishahe River Basin in Dujiangyan as an example[J]. The Chinese Journal of Geological Hazard and Control,2018,29(4):1-9. [7] 高娜. 地震应急救援优先级探讨[J]. 国际地震动态,2019(1):13-17.GAO Na. Discussion on the priority of earthquake emergency rescue[J]. Recent Developments in World Seismology,2019(1):13-17. [8] 王宇. 公路交通应急抢险救援装备要平战结合[J]. 交通世界(建养. 机械),2013(5):8.WANG Yu. Highway traffic emergency rescue equipment should be combined with peacetime and wartime[J]. Transpo World,2013(5):8. [9] 赵英宝,黄丽敏. 智能便携式CO2生命探测仪的设计[J]. 传感器与微系统,2012,31(2):106-108.ZHAO Yingbao,HUANG Limin. Design of an intelligent portable CO2 life detector[J]. Transducer and Microsystem Technologies,2012,31(2):106-108. [10] 金添,宋勇平. 穿墙雷达人体目标探测技术综述[J]. 电波科学学报,2020,35(4):486-495.JIN Tian,SONG Yongping. Review on human target detection using through-wall radar[J]. Chinese Journal of Radio Science,2020,35(4):486-495. [11] 朱延春. 浅析生命探测技术现状及应用[J]. 科技创新导报,2012(20):33.ZHU Yanchun. The current situation and application of life exploration technology[J]. Science and Technology Innovation Herald,2012(20):33. [12] 张磊,浦小海. 雷达生命探测仪用生命体征模拟系统研制[J]. 消防科学与技术,2023,42(1):94-97.ZHANG Lei,PU Xiaohai. Development of vital sign simulation system for radar life detector[J]. Fire Science and Technology,2023,42(1):94-97. [13] CHAN K H,LIN J C. Microprocessor-based cardiopulmonary rate monitor[J]. Medical & Biological Engineering & Computing,1987,25(1):41-44. [14] CHEN Kunmu,HUANG Yong,ZHANG Jianping,et al. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier[J]. IEEE Transactions on Bio-medical Engineering,2000,47(1):105-114. doi: 10.1109/10.817625 [15] 王宁. 基于FMCW雷达的多人定位及生命体征探测技术研究[D]. 南京: 南京理工大学, 2021.WANG Ning. Research on multi person localization and vital sign detection technology based on FMCW radar [D]. Nanjing: Nanjing University of Science and Technology, 2021. [16] 晏治. 雷达生命探测仪在消防救援中的应用探究[J]. 消防界(电子版),2022,8(4):52-54.YAN Zhi. Research on the application of radar life detector in fire rescue[J]. Fire Industry (Electronic Version),2022,8(4):52-54. [17] 李震,杨昀. 雷达生命探测仪在消防救援中的应用[J]. 消防界(电子版),2020,6(18):56-57.LI Zhen,YANG Yun. Application of radar life detector in fire rescue[J]. Fire Industry (Electronic Version),2020,6(18):56-57. [18] 刘海盆. 主动电磁波生命信号实时检测处理技术研究[D]. 长沙: 国防科学技术大学, 2010.LIU Haipen. The technology of real-time detecting and processing active electromagnetic life signal[D]. Changsha: National University of Defense Science Technology, 2010. [19] 薛春荣,刘鹏程,宋文. 矿用雷达式生命探测仪的设计[J]. 煤矿机械,2015,36(4):56-59.XUE Chunrong,LIU Pengcheng,SONG Wen. Design of radar life detecting for coal mine[J]. Coal Mine Machinery,2015,36(4):56-59. [20] 郑学召,孙梓峪,郭军,等. 矿山钻孔救援多源信息探测技术研究与应用[J]. 煤田地质与勘探,2022,50(11):94-102. doi: 10.12363/issn.1001-1986.22.05.0421ZHENG Xuezhao,SUN Ziyu,GUO Jun,et al. Research and application of multi-source information detection technology for drilling rescue of mine[J]. Coal Geology & Exploration,2022,50(11):94-102. doi: 10.12363/issn.1001-1986.22.05.0421 [21] 李钰梁. 矿井超宽带雷达生命探测系统的研究[D]. 阜新: 辽宁工程技术大学, 2022.LI Yuliang. Research on mine ultra-wideband radar life detection system[D]. Fuxin: Liaoning Technical University, 2022. [22] YUE Qizhu. A qualitative interpretation on the mechanism of the technique of electromagnetic radiation sounding[J]. Progress in Geophysics,2006,21(4):1281-1284. [23] 孙佳阳. 超低频电磁波无线收发装置的设计及其定位方法的研究[D]. 沈阳: 东北大学, 2019.SUN Jiayang. The design of wireless transceiver based on the electromagnetic wave of ultra-low frequency and the research on its location algorithm[D]. Shenyang: Northeastern University, 2019. [24] 唐伟浩. 基于负压波与超低频电磁波的管道泄漏检测定位方法研究[D]. 西安: 西安理工大学, 2018.TANG Weihao. Research on pipeline leak detection and location method based on negative pressure wave and ultra low frequency electromagnetic wave[D]. Xi'an: Xi'an University of Technology, 2018. [25] 潘波,王俊松,陈志刚,等. 基于超低频电磁波定位的出油管道检测技术[J]. 管道技术与设备,2015(2):33-35.PAN Bo,WANG Junsong,CHEN Zhigang,et al. Detection technique of flow lines based on localization using extremely low frequency electromagnetic wave[J]. Pipeline Technique and Equipment,2015(2):33-35. [26] 王毅,曹群生,袁肖. 地震期间的超低频电磁波传播异常研究[J]. 南京航空航天大学学报,2013,45(4):479-484.WANG Yi,CAO Qunsheng,YUAN Xiao. Electromagnetic propagation anomalies during earthquakes[J]. Journal of Nanjing University of Aeronautics & Astronautics,2013,45(4):479-484. [27] 吴江星,张晓强,于洪池. 吉林省中等地震前超低频电磁波异常分析[J]. 防灾减灾学报,2010,26(3):48-54.WU Jiangxing,ZHANG Xiaoqiang,YU Hongchi. Analysls of elf electromacgnetic waves' anomalies before moderate earthquakes in Jilin province[J]. Journal of Disaster Prevention and Reduction,2010,26(3):48-54. [28] 张地平. 地下电磁定位测距方法研究[D]. 成都: 电子科技大学, 2018.ZHANG Diping. Research on location method of underground electromagnetic positioning[D]. Chengdu: University of Electronic Science and Technology of China, 2018. [29] 王楠,秦其明,陈理,等. 天然源超低频电磁探测技术在煤储层识别中的应用[J]. 煤炭学报,2014,39(1):141-146. doi: 10.13225/j.cnki.jccs.2013.0153WANG Nan,QIN Qiming,CHEN Li,et al. Natural source super-low frequency electromagnetic prospecting in the application of coal-bed methane reservoir identification[J]. Journal of China Coal Society,2014,39(1):141-146. doi: 10.13225/j.cnki.jccs.2013.0153 [30] 蒋洪波,陈超,秦其明. 天然源超低频频谱的曲波分解与分析[J]. 光谱学与光谱分析,2012,32(2):472-475. doi: 10.3964/j.issn.1000-0593(2012)02-0472-04JIANG Hongbo,CHEN Chao,QIN Qiming. Decomposition and analysis of the natural source SLF spectrum using curvelet transform method[J]. Spectroscopy and Spectral Analysis,2012,32(2):472-475. doi: 10.3964/j.issn.1000-0593(2012)02-0472-04 [31] 白彦锋,李斌,杜英霞. 基于调制电磁脉冲场的主动电磁探测研究[J]. 国外电子测量技术,2012,31(2):39-42. doi: 10.3969/j.issn.1002-8978.2012.02.011BAI Yanfeng,LI Bin,DU Yingxia. Study of active EM detection based on EM modulated pulse field[J]. Foreign Electronic Measurement Technology,2012,31(2):39-42. doi: 10.3969/j.issn.1002-8978.2012.02.011 [32] XU Yanyun,WU Shiyou,CHEN Chao,et al. A novel method for automatic detection of trapped victims by ultrawideband radar[J]. IEEE Transactions on Geoscience & Remote Sensing,2012,50(8):3132-3142. [33] 景裕,曹育森,朱明明,等. 非接触式生命探测技术研究现状与发展[J]. 中国医疗设备,2021,36(6):1-4.JING Yu,CAO Yusen,ZHU Mingming,et al. Research status and development of non-contact life detection technology[J]. China Medical Devices,2021,36(6):1-4. [34] 马骁. 面向灾后救援的人体生命体征探测研究[D]. 成都: 电子科技大学, 2016.MA Xiao. Research on the detection of human vital signs after disaste[D]: Chengdu: University of Electronic Science and Technology of China, 2016. [35] 梁执桓,金婉妍. 基于新型谱减算法的音频微振生命探测仪系统设计[J]. 电子制作,2018(增刊2):16-18.LIANG Zhihuan,JIN Wanyan. Design of audio microvibration life detector system based on the new spectral subtraction algorithm[J]. Practical Electronics,2018(S2):16-18. [36] MURPHY D F,RAY M,WYLES R,et al. High-sensitivity 25-μm microbolometer FPAs[J]. International Society for Optics and Photonics,2003,4820:208-219. [37] 尹世敏,张海兵,南赛,等. 基于近红外光谱技术的人体低频振荡信号研究[J]. 燕山大学学报,2018,42(5):416-421.YIN Shimin,ZHANG Haibing,NAN Sai,et al. Study on low frequency oscillation signal of human body based on near infrared spectroscopy[J]. Journal of Yanshan University,2018,42(5):416-421. [38] LI Wenshi,LI Huiqi,LU S,et al. Lie detection experiment methodology:infrared image and spectum analysis[J]. Key Engineering Materials,2008,381/382:365-368. doi: 10.4028/www.scientific.net/KEM.381-382.365 [39] 孙黎明. 基于红外成像的生命探测仪设计与研究[D]. 秦皇岛: 燕山大学, 2012.SUN Liming. Design and research of life detection based on infrared imaging[D]. Qinhuangdao: Yanshan University, 2012. [40] KIM S H,LIM S C,KIM D Y. Intelligent intrusion detection system featuring a virtual fence, active intruder detection, classification, tracking, and action recognition[J]. Annals of Nuclear Energy,2018,112:845-855. [41] 郑学召,李诚康,文虎,等. 矿井灾害救援生命信息探测技术及装备综述[J]. 煤矿安全,2017,48(12):116-119. doi: 10.13347/j.cnki.mkaq.2017.12.031ZHENG Xuezhao,LI Chengkang,WEN Hu,et al. Summary of mine disaster rescue life information detection technology and equipment[J]. Safety in Coal Mines,2017,48(12):116-119. doi: 10.13347/j.cnki.mkaq.2017.12.031