Prediction of gas concentration in coal mine excavation working face
-
摘要: 针对目前瓦斯浓度预测方法存在数据处理不确定性、特征提取局限性及受主观性因素影响产生预测偏差等问题,提出了一种用于煤矿掘进工作面的瓦斯浓度预测方法。首先,在煤矿掘进工作面回风巷内每隔1 m布设激光瓦斯传感器,形成传感器网络,实时采集瓦斯浓度数据。然后,根据拉依达准则搜索并剔除瓦斯浓度数据中的异常值,并利用Lagrange插值多项式填补瓦斯浓度数据中的缺失值。最后,以剔除异常值及填补缺失值的瓦斯浓度数据为基础,采用经验模态分解算法将瓦斯浓度数据分解成本征模态函数和趋势项,再利用Hilbert变换对本征模态函数进行处理以获取数据的高频项和低频项,并将其输入最小二乘支持向量机中进行加权处理,输出瓦斯浓度预测结果。通过掘进工作面模拟装置进行瓦斯浓度预测模拟试验,并在某煤矿掘进工作面进行现场试验,结果表明:该方法预测的瓦斯浓度与实际测量值非常接近,均方误差小,表明预测结果准确率高;均方误差波动幅度小,表明适应性好,预测结果的稳定性强;预测用时短,表明预测效率高。Abstract: In current gas concentration prediction methods, there are problems of data processing uncertainty, feature extraction limitations, and prediction bias caused by subjective factors. In order to solve the above problems, a gas concentration prediction method for coal mine excavation working face is proposed. Firstly, laser gas sensors are installed every 1 meter in the return airway of the coal mine excavation working face, forming a sensor network to collect real-time gas concentration data. Secondly, the method searches and removes outliers in the gas concentration data according to the Laida criterion, and uses the Lagrange interpolation polynomial to fill in the missing values in the gas concentration data. Finally, based on removing outliers and filling in missing values in the gas concentration data, the empirical mode decomposition algorithm is used to decompose the gas concentration data into intrinsic mode functions and trend terms. The Hilbert transform is then used to process the intrinsic mode functions to obtain the high-frequency and low-frequency terms of the data, which are then input into the least squares support vector machine for weighted processing to output the gas concentration prediction results. The gas concentration prediction simulation experiment is conducted using a simulation device for the excavation working face, and an on-site test is conducted on a certain coal mine excavation working face. The results show that the predicted gas concentration by this method is very close to the actual measurement value, with a small mean square error, indicating a high accuracy of the prediction results. The small fluctuation of mean square error indicates good adaptability and strong stability of prediction results. Short prediction time indicates high prediction efficiency.
-
表 1 不同方法瓦斯浓度预测时间对比
Table 1. Comparison of gas concentration prediction time of different methods
s 表 2 传感器布置
Table 2. Sensors layout
传感器位置编号 传感器位置 瓦斯体积分数实际测量值 位置1 距离掘进工作面150 m 瓦斯体积分数相对较低,为0.25%~0.30% 位置2 距离掘进工作面120 m 瓦斯体积分数相对较低,为0.25%~0.30% 位置3 距离掘进工作面90 m 瓦斯体积分数相对较低,为0.25%~0.30% 位置4 距离掘进工作面60 m 瓦斯体积分数逐渐上升,为0.30%~0.35% 位置5 距离掘进工作面30 m 瓦斯体积分数逐渐上升,为0.35%~0.40% 位置6 距离掘进工作面3 m 瓦斯体积分数高峰区域,为0.40%~0.43% 表 3 本文方法的瓦斯浓度预测结果
Table 3. Gas concentration prediction results of the proposed method
% 时刻 瓦斯体积分数预测值 位置1 位置2 位置3 位置4 位置5 位置6 08:00 0.25 0.25 0.24 0.35 0.35 0.40 08:30 0.27 0.24 0.25 0.33 0.37 0.42 09:00 0.28 0.30 0.32 0.31 0.36 0.39 09:30 0.30 0.31 0.33 0.34 0.37 0.40 10:00 0.30 0.32 0.30 0.33 0.39 0.42 10:30 0.31 0.32 0.31 0.35 0.39 0.44 -
[1] 王德忠,朱国宏,王禹,等. 基于GA−LSTM的综采面瓦斯浓度预测模型[J]. 煤炭技术,2023,42(1):219-221.WANG Dezhong,ZHU Guohong,WANG Yu,et al. Prediction model of gas concentration in fully mechanized mining face based on GA-LSTM[J]. Coal Technology,2023,42(1):219-221. [2] 苏培东,张睿,杜宇本,等. 基于Kriging估值法的非煤隧道瓦斯预测[J]. 地下空间与工程学报,2021,17(3):953-960.SU Peidong,ZHANG Rui,DU Yuben,et al. Prediction of gas spatial distribution in non-coal strata tunnel by Kriging method[J]. Chinese Journal of Underground Space and Engineering,2021,17(3):953-960. [3] 梁运培,栗小雨,李全贵,等. 基于CS−LSTM的工作面瓦斯浓度智能预测研究[J]. 矿业安全与环保,2022,49(4):80-86.LIANG Yunpei,LI Xiaoyu,LI Quangui,et al. Research on intelligent prediction of gas concentration in working face based on CS-LSTM[J]. Mining Safety & Environmental Protection,2022,49(4):80-86. [4] 贾澎涛,张智远,梁荣,等. 基于PSO−CNN−aBiGRU的瓦斯浓度预测方法[J]. 矿业研究与开发,2021,41(12):76-81.JIA Pengtao,ZHANG Zhiyuan,LIANG Rong,et al. Gas concentration prediction method based on PSO-CNN-aBiGRU[J]. Mining Research and Development,2021,41(12):76-81. [5] 刘莹,杨超宇. 基于多因素的LSTM瓦斯浓度预测模型[J]. 中国安全生产科学技术,2022,18(1):108-113.LIU Ying,YANG Chaoyu. LSTM gas concentration prediction model based on multiple factors[J]. Journal of Safety Science and Technology,2022,18(1):108-113. [6] WANG Zhiming,MIAO Yanzi,LI Shoujun,et al. Prediction of mine gas concentration based on multi-variable time-delayed DOGM(1,N) model[J]. The Journal of Grey System,2022,34(1):70-83. [7] 程浩东,韩萌,张妮,等. 基于滑动窗口模型的数据流闭合高效用项集挖掘[J]. 计算机研究与发展,2021,58(11):2500-2514.CHENG Haodong,HAN Meng,ZHANG Ni,et al. Closed high utility itemsets mining over data stream based on sliding window model[J]. Journal of Computer Research and Development,2021,58(11):2500-2514. [8] 刘丹丹. 基于EMD的GNSS时间序列异常值探测算法[J]. 地球物理学进展,2021,36(5):1865-1873.LIU Dandan. New method of outlier detection for GNSS coordinate time series based on EMD approach[J]. Progress in Geophysics,2021,36(5):1865-1873. [9] 郑欣彤,边婷婷,张德强,等. ARIMA和LSTM方法长时间温度观测数据缺失值插补的比较[J]. 计算机应用,2022,42(增刊1):130-135.ZHENG Xintong,BIAN Tingting,ZHANG Deqiang,et al. Comparison of ARIMA and LSTM methods for interpolation of missing values of long-time temperature observations[J]. Journal of Computer Applications,2022,42(S1):130-135. [10] 吴哲,黄蓉,田朝薇. 时间分数阶Black−Scholes方程的重心Lagrange插值配点法[J]. 华侨大学学报(自然科学版),2023,44(2):269-276.WU Zhe,HUANG Rong,TIAN Zhaowei. Barycentric Lagrange interpolation collocation method for time-fractional Black-Scholes equation[J]. Journal of Huaqiao University(Natural Science),2023,44(2):269-276. [11] 钟凯强,周建平,薛瑞雷,等. 一种采用Lagrange插值的相贯线简化算法[J]. 热加工工艺,2021,50(15):131-135,140.ZHONG Kaiqiang,ZHOU Jianping,XUE Ruilei,et al. A intersecting line simplification algorithm using Lagrange interpolation[J]. Hot Working Technology,2021,50(15):131-135,140. [12] 吴虎,孔勇,王振伟,等. 基于EMD分解与1−D CNN算法的光纤振动信号的识别[J]. 激光与红外,2021,51(8):1043-1049.WU Hu,KONG Yong,WANG Zhenwei,et al. Recognition of optical fiber vibration signals based on VMD_CNN algorithm[J]. Laser & Infrared,2021,51(8):1043-1049. [13] 刘兵,郑承利. 基于EMD特征提取的高频面板数据自适应聚类方法[J]. 统计与决策,2022,38(10):16-20.LIU Bing,ZHENG Chengli. Adaptive clustering method for high frequency panel data based on EMD feature extraction[J]. Statistics & Decision,2022,38(10):16-20. [14] 韩丽,李梦洁,乔妍. 基于低频波动挖掘和高频校正的风电超短期预测[J]. 电网技术,2022,46(7):2750-2758.HAN Li,LI Mengjie,QIAO Yan. Ultra-short-term prediction of wind power based on low-frequency fluctuation mining and high-frequency correction[J]. Power System Technology,2022,46(7):2750-2758. [15] 苏娟,方舒,邢广进,等. 考虑需求价格弹性的CS−SVM短期负荷预测方法[J]. 江苏大学学报(自然科学版),2022,43(3):319-324. doi: 10.3969/j.issn.1671-7775.2022.03.011SU Juan,FANG Shu,XING Guangjin,et al. Short-term load forecasting method based on cuckoo search algorithm and support vector machine considering demand price elasticity[J]. Journal of Jiangsu University(Natural Science Edition),2022,43(3):319-324. doi: 10.3969/j.issn.1671-7775.2022.03.011 [16] 付乐天,李鹏,高莲. 考虑样本异常值的改进最小二乘支持向量机算法[J]. 仪器仪表学报,2021,42(6):179-190.FU Letian,LI Peng,GAO Lian. Improved LSSVM algorithm considering sample outliers[J]. Chinese Journal of Scientific Instrument,2021,42(6):179-190. [17] 李森娟,张萍,岳大为,等. 基于支持向量机的风电机组故障预测[J]. 计算机仿真,2022,39(5):84-88,180.LI Senjuan,ZHANG Ping,YUE Dawei,et al. Fault prediction of wind turbine based on support vector machine[J]. Computer Simulation,2022,39(5):84-88,180. [18] 张皓,李东升. 复分析Hilbert变换计算理论及非线性检测准则[J]. 振动工程学报,2022,35(6):1336-1345.ZHANG Hao,LI Dongsheng. Hilbert transform calculated by complex analysis theory and its nonlinear detection criterion[J]. Journal of Vibration Engineering,2022,35(6):1336-1345. [19] 王媛彬,李媛媛,韩骞,等. 基于PCA−BO−XGBoost的矿井回采工作面瓦斯涌出量预测[J]. 西安科技大学学报,2022,42(2):371-379.WANG Yuanbin,LI Yuanyuan,HAN Qian,et al. Gas emission prediction of the stope in coal mine based on PCA-BO-XGBoost[J]. Journal of Xi'an University of Science and Technology,2022,42(2):371-379. [20] 赵伟,陈培红,曹阳. 基于ACSOA−BP神经网络的瓦斯含量预测模型[J]. 煤矿安全,2022,53(1):174-180.ZHAO Wei,CHEN Peihong,CAO Yang. Prediction model of coal seam gas content based on ACSOA optimized BP neural network[J]. Safety in Coal Mines,2022,53(1):174-180. [21] 廖巍. 复杂地质条件下瓦斯含量精准预测研究与系统开发[J]. 煤炭工程,2022,54(5):142-145.LIAO Wei. Accurate prediction of gas content and system development under complex geological conditions[J]. Coal Engineering,2022,54(5):142-145.