留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Fano共振的全介质型超表面甲烷传感器设计

刘海 周彤 陈聪 高鹏 戴耀威 王晓林 段森浩 高宗阳

刘海,周彤,陈聪,等. 基于Fano共振的全介质型超表面甲烷传感器设计[J]. 工矿自动化,2023,49(9):106-114.  doi: 10.13272/j.issn.1671-251x.18108
引用本文: 刘海,周彤,陈聪,等. 基于Fano共振的全介质型超表面甲烷传感器设计[J]. 工矿自动化,2023,49(9):106-114.  doi: 10.13272/j.issn.1671-251x.18108
LIU Hai, ZHOU Tong, CHEN Cong, et al. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation,2023,49(9):106-114.  doi: 10.13272/j.issn.1671-251x.18108
Citation: LIU Hai, ZHOU Tong, CHEN Cong, et al. Design of all dielectric metasurface methane sensor based on Fano resonance[J]. Journal of Mine Automation,2023,49(9):106-114.  doi: 10.13272/j.issn.1671-251x.18108

基于Fano共振的全介质型超表面甲烷传感器设计

doi: 10.13272/j.issn.1671-251x.18108
基金项目: 国家重点研发计划项目(2021YFC2902702,2021YFC2902703,2021YFC2902704);国家自然科学基金项目(51874301)。
详细信息
    作者简介:

    刘海(1983— ),男,湖北仙桃人,教授,博士,博士研究生导师,主要研究方向为传感检测、安全监测和光电技术等,E-mail:sieeoe@cumt.edu.cn

  • 中图分类号: TD712

Design of all dielectric metasurface methane sensor based on Fano resonance

  • 摘要: 与传统甲烷传感器相比,超表面甲烷传感器具有高度灵敏、性能稳定、小型化、集成化、多功能可定制等优点,更满足在煤矿等复杂环境下的应用需求。设计了基于Fano共振的全介质型超表面甲烷传感器。超表面结构由周期性的硅纳米结构和SiO2衬底组成,包含4个方形硅环纳米结构及中心的硅纳米方块。通过改变几何参数观察其对全介质超表面结构Fano共振的影响,结果表明,综合考虑结构的品质因数和调制深度,应选取方形硅环中心距离为1 000 nm,方形硅环的内边长为100 nm,硅纳米块的边长为200 nm,此时品质因数为227.60,调制深度为99.98%,接近100%。通过在超表面结构内涂覆甲烷气敏薄膜实现传感检测功能,结合极窄线宽的Fano谐振特性和显著的局域场增强效应,实现对甲烷气体的高精度检测。仿真结果表明:全介质超表面传感器对甲烷体积分数的灵敏度为−0.953 nm/%,且甲烷体积分数变化与共振峰偏移量呈线性关系,监测性能较好;全介质超表面传感器的折射率灵敏度高达883.95 nm/RIU,且共振峰偏移量与环境折射率增量呈线性关系,可用于检测环境折射率的变化。

     

  • 图  1  全介质超表面结构A

    Figure  1.  All-dielectric metasurface structure A

    图  2  全介质超表面结构A的透射谱和电场

    Figure  2.  Transmission spectra and electric field of all-dielectric metasurface structure A

    图  3  全介质超表面结构B

    Figure  3.  All-dielectric metasurface structure B

    图  4  全介质超表面结构B的透射谱和电场

    Figure  4.  Transmission spectra and electric field of all-dielectric metasurface structure B

    图  5  参数变化对结构B透射谱的影响

    Figure  5.  Effect of parameter variations on the transmission spectrum of structure B

    图  6  入射光偏振角对结构B Fano共振的影响

    Figure  6.  Effect of incident light polarization angle on Fano resonance of structure B

    图  7  入射光偏振角对结构C Fano共振的影响

    Figure  7.  Effect of incident light polarization angle on Fano resonance of structure C

    图  8  不同体积分数下甲烷传感器性能仿真结果

    Figure  8.  Simulation results of methane sensor performance under different volume fractions

    图  9  不同环境折射率下甲烷传感器性能仿真结果

    Figure  9.  Simulation results of methane sensor performance under different environmental refractive indices

    图  10  全介质型超表面甲烷传感器在煤矿中的应用

    Figure  10.  Application of all-dielectric metasurface methane sensor in coal mines

    表  1  几何参数变化对QT的影响

    Table  1.   Effect of geometric parameter changes on Q and T

    序号 P/nm W/nm d/nm Q T/%
    1 800 50 150 115.14 84.91
    2 200 91.92 84.64
    3 250 65.36 98.10
    4 100 150 115.38 86.54
    5 200 114.90 87.85
    6 250 76.27 94.74
    7 150 150 116.12 93.44
    8 200 92.69 91.61
    9 250 76.93 98.95
    10 1 000 50 150 227.60 63.75
    11 200 227.15 36.58
    12 250 150.84 94.03
    13 100 150 228.37 29.53
    14 200 227.60 99.98
    15 250 148.92 98.44
    16 150 150 460.84 29.49
    17 200 229.78 72.73
    18 250 228.84 67.38
    19 1 200 50 150 110.84 99.96
    20 200 110.66 85.32
    21 250 88.11 83.63
    22 100 150 111.64 99.22
    23 200 111.44 88.61
    24 250 88.70 82.52
    25 150 150 226.27 44.28
    26 200 150.48 79.03
    27 250 149.92 94.54
    下载: 导出CSV

    表  2  参数优化结果

    Table  2.   Parameter optimization results

    序号 d/nm W/nm P/nm S/(nm·%−1
    1 150 50 800 −0.550
    2 900 −0.787
    3 1 000 −0.927
    4 100 800 −0.543
    5 900 −0.777
    6 1 000 −0.943
    7 150 800 −0.600
    8 900 −0.700
    9 1 000 −0.927
    10 200 50 800 −0.557
    11 900 −0.793
    12 1 000 −0.910
    13 100 800 −0.553
    14 900 −0.720
    15 1 000 −0.953
    16 150 800 −0.543
    17 900 −0.770
    18 1 000 −0.933
    19 250 50 800 −0.560
    20 900 −0.737
    21 1 000 −0.973
    22 100 800 −0.557
    23 900 −0.730
    24 1 000 −0.933
    25 150 800 −0.547
    26 900 −0.717
    27 1 000 −0.943
    下载: 导出CSV
  • [1] UMA S,SHOBANA M K. Metal oxide semiconductor gas sensors in clinical diagnosis and environmental monitoring[J]. Sensors and Actuators A:Physical,2023,349. DOI: 10.1016/j.sna.2022.114044.
    [2] 刘妮,舒震,隋然,等. 基于MEMS技术的甲烷催化燃烧传感器研究进展[J]. 煤炭与化工,2022,45(11):131-135,147. doi: 10.19286/j.cnki.cci.2022.11.036

    LIU Ni,SHU Zhen,SUI Ran,et al. Research progress of methane catalytic combustion sensor based on MEMS technology[J]. Coal and Chemical Industry,2022,45(11):131-135,147. doi: 10.19286/j.cnki.cci.2022.11.036
    [3] XU Maosen,XU Yan,TAO Jifang,et al. A design of an ultra-compact infrared gas sensor for respiratory quotient (qCO2) detection[J]. Sensors and Actuators A:Physical,2021,331. DOI: 10.1016/j.sna.2021.112953.
    [4] FARQUHAR A K,HENSHAW G S,WILLIAMS D E. Errors in ambient gas concentration measurement caused by acoustic response of electrochemical gas sensors[J]. Sensors and Actuators A:Physical,2023,354. DOI: 10.1016/j.sna.2023.114254.
    [5] 李泽芳. 矿用传感器技术发展现状与展望[J]. 煤炭与化工,2021,44(8):74-76.

    LI Zefang. Status and prospect of mining sensor technology development[J]. Coal and Chemical Industry,2021,44(8):74-76.
    [6] HU Jie,BANDYOPADHYAY S,LIU Yuhui,et al. A review on metasurface:from principle to smart metadevices[J]. Frontiers in Physics,2020,8. DOI: 10.3389/fphy.2020.586087.
    [7] HILL M T. Optical waveguide switch based on a negative-index metamaterial load[J]. Optics Letters,2023,48(4):948-951. doi: 10.1364/OL.480020
    [8] JIANG Yannan,SUN Shuo,WANG Jiao. Single-layer near-zero refractive index metamaterial lens based on non-complete periodic arrays[J]. Optics Express,2022,30(25):44878-44885. doi: 10.1364/OE.475299
    [9] GARIFULLIN A I,GAINUTDINOV R KH,KHAMADEEV M A. Acceleration of chemical reactions in hybrid one-dimensional photonic crystals based on high-index metamaterials[J]. Bulletin of the Russian Academy of Sciences:Physics,2023,86(S1):66-70.
    [10] 韩冷,谢文宣,龚安民,等. 基于超表面的卫星天线设计进展综述[J/OL]. 电讯技术:1-10[2023-04-12]. DOI: 10.20079/j.issn.1001-893x.221225002.

    HAN Leng,XIE Wenxuan,GONG Anmin,et al. Research progress of satellite antenna based on metasurface[J/OL]. Telecommunication Engineering:1-10[2023-04-12]. DOI: 10.20079/j.issn.1001-893x.221225002.
    [11] 刘海霞,易浩,马向进,等. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报,2022,43(12):32-44.

    LIU Haixia,YI Hao,MA Xiangjin,et al. Indoor wireless signal coverage and enhancement based on passive reconfigurable intelligent metasurface[J]. Journal on Communications,2022,43(12):32-44.
    [12] WANG Yuandong,WU Guozhang,WANG Yibo,et al. Single-layer metasurface:optical transparency,microwave scattering reduction and infrared emissivity decrease[J]. Optical Materials,2023,135. DOI: 10.1016/j.optmat.2022.113380.
    [13] CAI Haocheng,YU Xiaoxu,MAO Luhong. Theoretical study on all-dielectric elliptic cross metasurface sensor governed by bound states in the continuum[J]. Materials,2023,16(5). DOI: 10.3390/ma16052113.
    [14] DANILA O,GROSS B M. Towards highly efficient nitrogen dioxide gas sensors in humid and wet environments using triggerable-polymer metasurfaces[J]. Polymers,2023,15(3). DOI: 10.3390/polym15030545.
    [15] MIHAI L,MIHALCEA R,TOMESCU R,et al. Selective mid-IR metamaterial-based gas sensor system:proof of concept and performances tests[J]. Nanomaterials,2022,12(6). DOI: 10.3390/nano12061009.
    [16] KAZANSKIY N L,BUTT M A,KHONINA S N. Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface[J]. Sensors,2021,21(2). DOI: 10.3390/s21020378.
    [17] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review,1961,124(6):1866-1878. doi: 10.1103/PhysRev.124.1866
    [18] MIROSHNICHENKO A E,FLACH S,KIVSHAR Y S. Fano resonances in nanoscale structures [J]. Reviews of Modern Physics,2010,82(3). DOI: 10.1103/RevModPhys.82.2257.
    [19] FEDOTOV V A,PAPASIMAKIS N,PLUM E,et al. Spectral collapse in ensembles of metamolecules[J]. Physical Review Letters,2010,104(22). DOI: 10.1103/PhysRevLett.104.223901.
    [20] YUAN Shuai,QIU Xingzhi,CUI Chengcong,et al. Strong photoluminescence enhancement in all-dielectric fano metasurface with high quality factor[J]. ACS Nano,2017,11(11):10704-10711. doi: 10.1021/acsnano.7b04810
    [21] YANG Jianchun,ZHOU Lang,CHE Xin,et al. Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A[J]. Sensors and Actuators B:Chemical,2016,235:717-722. doi: 10.1016/j.snb.2016.05.125
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  975
  • HTML全文浏览量:  69
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 修回日期:  2023-09-12
  • 网络出版日期:  2023-09-28

目录

    /

    返回文章
    返回