Design of all dielectric metasurface methane sensor based on Fano resonance
-
摘要: 与传统甲烷传感器相比,超表面甲烷传感器具有高度灵敏、性能稳定、小型化、集成化、多功能可定制等优点,更满足在煤矿等复杂环境下的应用需求。设计了基于Fano共振的全介质型超表面甲烷传感器。超表面结构由周期性的硅纳米结构和SiO2衬底组成,包含4个方形硅环纳米结构及中心的硅纳米方块。通过改变几何参数观察其对全介质超表面结构Fano共振的影响,结果表明,综合考虑结构的品质因数和调制深度,应选取方形硅环中心距离为1 000 nm,方形硅环的内边长为100 nm,硅纳米块的边长为200 nm,此时品质因数为227.60,调制深度为99.98%,接近100%。通过在超表面结构内涂覆甲烷气敏薄膜实现传感检测功能,结合极窄线宽的Fano谐振特性和显著的局域场增强效应,实现对甲烷气体的高精度检测。仿真结果表明:全介质超表面传感器对甲烷体积分数的灵敏度为−0.953 nm/%,且甲烷体积分数变化与共振峰偏移量呈线性关系,监测性能较好;全介质超表面传感器的折射率灵敏度高达883.95 nm/RIU,且共振峰偏移量与环境折射率增量呈线性关系,可用于检测环境折射率的变化。Abstract: Compared with traditional methane sensors, metasurface methane sensors have advantages such as high sensitivity, stable performance, miniaturization, integration, and multi functional customizability. It better meets the application needs in complex environments such as coal mines. This paper proposes an all dielectric type metasurface methane sensor based on Fano resonance. The metasurface structure consists of periodic silicon nanostructures and SiO2 substrates, consisting of four square silicon ring nanostructures and a central silicon nanoblock. By changing the geometric parameters, the effect on the Fano resonance of the all dielectric metasurface structure is observed. The results show the following points. Considering the quality factor and modulation depth of the structure, the center distance of the square silicon ring should be 1000 nm, the inner edge length of the square silicon ring should be 100 nm, and the edge length of the silicon nanoblock should be 200 nm. At this time, the quality factor is 227.60, and the modulation depth is 99.98%, which is close to 100%. By coating methane gas sensing thin films within the metasurface structure to achieve sensing and detection functions, combined with the extremely narrow linewidth Fano resonance features and significant local field enhancement effect, high-precision detection of methane gas is achieved. The simulation results show that the sensitivity of the all dielectric metasurface sensor to methane volume fraction is −0.953 nm/%. The change in methane volume fraction is linearly related to the shift of the resonance peak, indicating good monitoring performance. The refractive index sensitivity of the all dielectric metasurface sensor is as high as 883.95 nm/RIU. The resonance peak offset is linearly related to the environmental refractive index increment, which can be used to detect changes in environmental refractive index.
-
表 1 几何参数变化对Q,T的影响
Table 1. Effect of geometric parameter changes on Q and T
序号 P/nm W/nm d/nm Q T/% 1 800 50 150 115.14 84.91 2 200 91.92 84.64 3 250 65.36 98.10 4 100 150 115.38 86.54 5 200 114.90 87.85 6 250 76.27 94.74 7 150 150 116.12 93.44 8 200 92.69 91.61 9 250 76.93 98.95 10 1 000 50 150 227.60 63.75 11 200 227.15 36.58 12 250 150.84 94.03 13 100 150 228.37 29.53 14 200 227.60 99.98 15 250 148.92 98.44 16 150 150 460.84 29.49 17 200 229.78 72.73 18 250 228.84 67.38 19 1 200 50 150 110.84 99.96 20 200 110.66 85.32 21 250 88.11 83.63 22 100 150 111.64 99.22 23 200 111.44 88.61 24 250 88.70 82.52 25 150 150 226.27 44.28 26 200 150.48 79.03 27 250 149.92 94.54 表 2 参数优化结果
Table 2. Parameter optimization results
序号 d/nm W/nm P/nm S/(nm·%−1) 1 150 50 800 −0.550 2 900 −0.787 3 1 000 −0.927 4 100 800 −0.543 5 900 −0.777 6 1 000 −0.943 7 150 800 −0.600 8 900 −0.700 9 1 000 −0.927 10 200 50 800 −0.557 11 900 −0.793 12 1 000 −0.910 13 100 800 −0.553 14 900 −0.720 15 1 000 −0.953 16 150 800 −0.543 17 900 −0.770 18 1 000 −0.933 19 250 50 800 −0.560 20 900 −0.737 21 1 000 −0.973 22 100 800 −0.557 23 900 −0.730 24 1 000 −0.933 25 150 800 −0.547 26 900 −0.717 27 1 000 −0.943 -
[1] UMA S,SHOBANA M K. Metal oxide semiconductor gas sensors in clinical diagnosis and environmental monitoring[J]. Sensors and Actuators A:Physical,2023,349. DOI: 10.1016/j.sna.2022.114044. [2] 刘妮,舒震,隋然,等. 基于MEMS技术的甲烷催化燃烧传感器研究进展[J]. 煤炭与化工,2022,45(11):131-135,147. doi: 10.19286/j.cnki.cci.2022.11.036LIU Ni,SHU Zhen,SUI Ran,et al. Research progress of methane catalytic combustion sensor based on MEMS technology[J]. Coal and Chemical Industry,2022,45(11):131-135,147. doi: 10.19286/j.cnki.cci.2022.11.036 [3] XU Maosen,XU Yan,TAO Jifang,et al. A design of an ultra-compact infrared gas sensor for respiratory quotient (qCO2) detection[J]. Sensors and Actuators A:Physical,2021,331. DOI: 10.1016/j.sna.2021.112953. [4] FARQUHAR A K,HENSHAW G S,WILLIAMS D E. Errors in ambient gas concentration measurement caused by acoustic response of electrochemical gas sensors[J]. Sensors and Actuators A:Physical,2023,354. DOI: 10.1016/j.sna.2023.114254. [5] 李泽芳. 矿用传感器技术发展现状与展望[J]. 煤炭与化工,2021,44(8):74-76.LI Zefang. Status and prospect of mining sensor technology development[J]. Coal and Chemical Industry,2021,44(8):74-76. [6] HU Jie,BANDYOPADHYAY S,LIU Yuhui,et al. A review on metasurface:from principle to smart metadevices[J]. Frontiers in Physics,2020,8. DOI: 10.3389/fphy.2020.586087. [7] HILL M T. Optical waveguide switch based on a negative-index metamaterial load[J]. Optics Letters,2023,48(4):948-951. doi: 10.1364/OL.480020 [8] JIANG Yannan,SUN Shuo,WANG Jiao. Single-layer near-zero refractive index metamaterial lens based on non-complete periodic arrays[J]. Optics Express,2022,30(25):44878-44885. doi: 10.1364/OE.475299 [9] GARIFULLIN A I,GAINUTDINOV R KH,KHAMADEEV M A. Acceleration of chemical reactions in hybrid one-dimensional photonic crystals based on high-index metamaterials[J]. Bulletin of the Russian Academy of Sciences:Physics,2023,86(S1):66-70. [10] 韩冷,谢文宣,龚安民,等. 基于超表面的卫星天线设计进展综述[J/OL]. 电讯技术:1-10[2023-04-12]. DOI: 10.20079/j.issn.1001-893x.221225002.HAN Leng,XIE Wenxuan,GONG Anmin,et al. Research progress of satellite antenna based on metasurface[J/OL]. Telecommunication Engineering:1-10[2023-04-12]. DOI: 10.20079/j.issn.1001-893x.221225002. [11] 刘海霞,易浩,马向进,等. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报,2022,43(12):32-44.LIU Haixia,YI Hao,MA Xiangjin,et al. Indoor wireless signal coverage and enhancement based on passive reconfigurable intelligent metasurface[J]. Journal on Communications,2022,43(12):32-44. [12] WANG Yuandong,WU Guozhang,WANG Yibo,et al. Single-layer metasurface:optical transparency,microwave scattering reduction and infrared emissivity decrease[J]. Optical Materials,2023,135. DOI: 10.1016/j.optmat.2022.113380. [13] CAI Haocheng,YU Xiaoxu,MAO Luhong. Theoretical study on all-dielectric elliptic cross metasurface sensor governed by bound states in the continuum[J]. Materials,2023,16(5). DOI: 10.3390/ma16052113. [14] DANILA O,GROSS B M. Towards highly efficient nitrogen dioxide gas sensors in humid and wet environments using triggerable-polymer metasurfaces[J]. Polymers,2023,15(3). DOI: 10.3390/polym15030545. [15] MIHAI L,MIHALCEA R,TOMESCU R,et al. Selective mid-IR metamaterial-based gas sensor system:proof of concept and performances tests[J]. Nanomaterials,2022,12(6). DOI: 10.3390/nano12061009. [16] KAZANSKIY N L,BUTT M A,KHONINA S N. Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface[J]. Sensors,2021,21(2). DOI: 10.3390/s21020378. [17] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review,1961,124(6):1866-1878. doi: 10.1103/PhysRev.124.1866 [18] MIROSHNICHENKO A E,FLACH S,KIVSHAR Y S. Fano resonances in nanoscale structures [J]. Reviews of Modern Physics,2010,82(3). DOI: 10.1103/RevModPhys.82.2257. [19] FEDOTOV V A,PAPASIMAKIS N,PLUM E,et al. Spectral collapse in ensembles of metamolecules[J]. Physical Review Letters,2010,104(22). DOI: 10.1103/PhysRevLett.104.223901. [20] YUAN Shuai,QIU Xingzhi,CUI Chengcong,et al. Strong photoluminescence enhancement in all-dielectric fano metasurface with high quality factor[J]. ACS Nano,2017,11(11):10704-10711. doi: 10.1021/acsnano.7b04810 [21] YANG Jianchun,ZHOU Lang,CHE Xin,et al. Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A[J]. Sensors and Actuators B:Chemical,2016,235:717-722. doi: 10.1016/j.snb.2016.05.125